首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1789篇
  免费   77篇
  国内免费   18篇
测绘学   34篇
大气科学   130篇
地球物理   530篇
地质学   552篇
海洋学   154篇
天文学   317篇
综合类   1篇
自然地理   166篇
  2021年   30篇
  2020年   24篇
  2019年   29篇
  2018年   53篇
  2017年   44篇
  2016年   70篇
  2015年   44篇
  2014年   52篇
  2013年   109篇
  2012年   71篇
  2011年   106篇
  2010年   72篇
  2009年   113篇
  2008年   97篇
  2007年   79篇
  2006年   79篇
  2005年   73篇
  2004年   54篇
  2003年   52篇
  2002年   57篇
  2001年   39篇
  2000年   33篇
  1999年   41篇
  1998年   35篇
  1997年   24篇
  1996年   32篇
  1995年   27篇
  1994年   24篇
  1993年   18篇
  1992年   23篇
  1991年   14篇
  1990年   19篇
  1989年   10篇
  1988年   18篇
  1987年   12篇
  1986年   9篇
  1985年   18篇
  1984年   20篇
  1983年   22篇
  1982年   13篇
  1981年   20篇
  1980年   9篇
  1979年   16篇
  1978年   16篇
  1977年   10篇
  1976年   6篇
  1974年   5篇
  1973年   7篇
  1971年   6篇
  1967年   6篇
排序方式: 共有1884条查询结果,搜索用时 12 毫秒
81.
Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence the ability of the model to represent real world conditions. Understanding how these decisions influence model performance is crucial, especially when making science‐based policy decisions. This study used the Soil and Water Assessment Tool (SWAT) model in West Lake Erie Basin (WLEB) to examine the influence of several of these decisions on hydrological processes and streamflow simulations. Specifically, this study addressed the following objectives (1) demonstrate the importance of considering intra‐watershed processes during model development, (2) compare and evaluated spatial calibration versus calibration at outlet and (3) evaluate parameter transfers across temporal and spatial scales. A coarser resolution (HUC‐12) model and a finer resolution model (NHDPlus model) were used to support the objectives. Results showed that knowledge of watershed characteristics and intra‐watershed processes are critical to produced accurate and realistic hydrologic simulations. The spatial calibration strategy produced better results compared to outlet calibration strategy and provided more confidence. Transferring parameter values across spatial scales (i.e. from coarser resolution model to finer resolution model) needs additional fine tuning to produce realistic results. Transferring parameters across temporal scales (i.e. from monthly to yearly and daily time‐steps) performed well with a similar spatial resolution model. Furthermore, this study shows that relying solely on quantitative statistics without considering additional information can produce good but unrealistic simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
82.
83.
The governing equations are developed for a steady-state frictional geostrophic inhomogeneous 1.5-layer ocean model, with horizontal velocity field that is linearly sheared in the vertical coordinate. We show that in the adiabatic, thermally non-diffusive limit there are an infinite number of solutions for the temperature and depth fields of the subtropical gyre even with the constraint of identical mass within each temperature range. In the non-adiabatic case, a unique subtropical gyre solution exists that can exhibit a temperature front, containing an unbounded meridional gradient, in the northwest corner of the solution domain. The role of mixing of enthalpy in the western boundary layer (WBL) region was investigated by comparing the two extreme cases of no mixing and complete mixing of enthalpy in this region. Also investigated was the dependence of the meridional heat transport on the air–sea heat exchange coefficient, κ. The temperature field was found to be strongly influenced by mixing. However, both qualitatively and quantitatively, the heat transport is similar in the model with and without mixing. The heat transport attains a single local maximum at κ=κc, that lies within values that are oceanographically relevant.  相似文献   
84.
Water in the subsurface of the Earth’s cold regions—and possibly the subsurface of Mars—resides in the liquid, vapor, and ice phases. However, relatively few simulations addressing full three-phase, nonisothermal water dynamics in below-freezing porous media have been undertaken. This paper presents a nonisothermal, three-phase approach to modeling water migration in partially frozen porous media. Conservation equations for water (as ice, liquid, and vapor) and a single gas species (in the gas phase and dissolved in water) are coupled to a heat transport equation and solved by a finite-volume method with fully implicit time stepping. Particular attention is given to the method of spatial differencing when the pore space is partially filled with ice. The numerical model is able to reproduce freezing-induced water redistribution observed in laboratory experiments. Simulations of Earth permafrost dynamics and of the formation and evolution of a planetary-scale cryosphere on Mars demonstrate the new capabilities.  相似文献   
85.
In principle, many climate policymakers have accepted that large-scale carbon dioxide removal (CDR) is necessary to meet the Paris Agreement’s mitigation targets, but they have avoided proposing by whom CDR might be delivered. Given its role in international climate policy, the European Union (EU) might be expected to lead the way. But among EU climate policymakers so far there is little talk on CDR, let alone action. Here we assess how best to ‘target’ CDR to motivate EU policymakers exploring which CDR target strategy may work best to start dealing with CDR on a meaningful scale. A comprehensive CDR approach would focus on delivering the CDR volumes required from the EU by 2100, approximately at least 50 Gigatonnes (Gt) CO2, according to global model simulations aiming to keep warming below 2°C. A limited CDR approach would focus on an intermediate target to deliver the CDR needed to reach ‘net zero emissions’ (i.e. the gross negative emissions needed to offset residual positive emissions that are too expensive or even impossible to mitigate). We argue that a comprehensive CDR approach may be too intimidating for EU policymakers. A limited CDR approach that only addresses the necessary steps to reach the (intermediate) target of ‘net zero emissions’ is arguably more achievable, since it is a better match to the existing policy paradigm and would allow for a pragmatic phase-in of CDR while avoiding outright resistance by environmental NGOs and the broader public.

Key policy insights

  • Making CDR an integral part of EU climate policy has the potential to significantly reshape the policy landscape.

  • Burden sharing considerations would probably play a major role, with comprehensive CDR prolonging the disparity and tensions between progressives and laggards.

  • Introducing limited CDR in the context of ‘net zero’ pathways would retain a visible primary focus on decarbonization but acknowledge the need for a significant enhancement of removals via ‘natural’ and/or ‘engineered’ sinks.

  • A decarbonization approach that intends to lead to a low level of ‘residual emissions’ (to be tackled by a pragmatic phase-in of CDR) should be the priority of EU climate policy.

  相似文献   
86.
87.
Elevated turbidity (Tn) and suspended sediment concentrations (SSC) during and following flood events can degrade water supply quality and aquatic ecosystem integrity. Streams draining glacially conditioned mountainous terrain, such as those in the Catskill Mountains of New York State, are particularly susceptible to high levels of Tn and SSC sourced from erosional contact with glacial-related sediment. This study forwards a novel approach to evaluate the effectiveness of stream restoration best management practices (BMPs) meant to reduce stream Tn and SSC, and demonstrates the approach within the Stony Clove sub-basin of the Catskills, a water supply source for New York City. The proposed approach is designed to isolate BMP effects from natural trends in Tn and SSC caused by trends in discharge and shifts in average Tn or SSC per unit discharge (Q) following large flood events. We develop Dynamic Linear Models (DLMs) to quantify how Tn-Q and SSC-Q relationships change over time at monitoring stations upstream and downstream of BMPs within the Stony Clove and in three other sub-basins without BMPs, providing observational evidence of BMP effectiveness. A process-based model, the River Erosion Model, is then developed to simulate natural, hydrology-driven SSC-Q dynamics in the Stony Clove sub-basin (absent of BMP effects). We use DLMs to compare the modelled and observed SSC-Q dynamics and isolate the influence of the BMPs. Results suggest that observed reductions in SSC and Tn in the Stony Clove sub-basin have been driven by a combination of declining streamflow and the installed BMPs, confirming the utility of the BMPs for the monitored hydrologic conditions.  相似文献   
88.
The infrared spectrum of CaAl2Si2O7 · H2O-lawsonite, has been characterized to pressures of 20 GPa at 300 K. Our results constrain the response to compression of the silicate tetrahedra, hydroxyl units, and water molecules in this material. The asymmetric and symmetric stretching and bending vibrations of the Si2O7 groups (at zero pressure frequencies between 600 and 1000 cm−1) increase in frequency with pressure at rates between 3.6 and 5.9 cm−1/GPa. All silicate modes appear to shift continuously with pressure to 20 GPa, although the lowest frequency stretching vibration becomes unresolvable above 18 GPa, and a splitting of the main bending vibration is observed near this pressure. The O-H stretches of the hydroxyl units exhibit a discontinuity in their mode shifts at ∼8–9 GPa, which we interpret to be produced by a pressure-induced change in hydrogen bonding. The stretching and bending vibrations of the water molecule are relatively unaffected by compression to 20 GPa, thus demonstrating that the structural cavities in which water molecules reside are relatively rigid. Significant changes in the amplitude of the O-H stretches of the hydroxyl and water units are observed at this pressure as well; nevertheless, our results demonstrate that the dominant structural units in lawsonite persist metastably at 300 K with only modest structural modifications well beyond the known stability field of this phase. Received: 10 July 1998 / Revised, accepted: 23 October 1998  相似文献   
89.
Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cal yr BP when Pinus ponderosa became established. C/N ratios, δ13C and δ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号