首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   19篇
  国内免费   10篇
大气科学   13篇
地球物理   135篇
地质学   158篇
海洋学   97篇
天文学   78篇
综合类   2篇
自然地理   40篇
  2024年   2篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   11篇
  2017年   14篇
  2016年   11篇
  2015年   16篇
  2014年   18篇
  2013年   23篇
  2012年   22篇
  2011年   35篇
  2010年   27篇
  2009年   31篇
  2008年   31篇
  2007年   25篇
  2006年   20篇
  2005年   27篇
  2004年   24篇
  2003年   18篇
  2002年   10篇
  2001年   10篇
  2000年   14篇
  1999年   7篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   8篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有523条查询结果,搜索用时 19 毫秒
31.
Oshima-shima volcano is an endmember of a geochemical variation which is characterized by a low FeO content toward the back-arc side across the NE Japan arc. Analyses of the basalts show primitive characteristics. Variation trends of the chemical compositions indicate initial olivine control then olivine+clinopyroxene control from a picritic to a differentiated basalt. The more magnesian basalts have the more magnesian olivine phenocrysts. The most magnesian (MgO 15%) of all rock samples, contains olivine phenocrysts with a composition of Fo 93.7 as a liquidus phase and is considered a product of a mantle-derived magma. The possible range in FeO and MgO content of source mantle for the Oshima-shima magma can be demonstrated. Ichinomegata lherzolite inclusions, also from the back-arc side of NE Japan, is unlikely to be a candidate for the source mantle for high FeO. The upper mantle beneath the back-arc side is considered to be compositionally zoned; a Fe-rich mantle (Ichinomegata lherzolite) at shallower place and a Fe-poor mantle (the source mantle for back-arc side volcanoes).  相似文献   
32.
Fractionation of sulfur isotopes and selenium was measured between coexisting pyrite and chalcopyrite and between coexisting pyrrhotite and chalcopyrite from the Besshi deposit of Kieslager-type, Central Shikoku, Japan. In all the pyrite-chalcopyrite pairs studied, 34S is enriched in pyrite relative to chalcopyrite, while selenium is enriched conversely in chalcopyrite relative to pyrite. The mean 34Spy-cp value is +0.53±0.36 per mil, and the mean value of the distribution coefficient of selenium, Dcp-py, is 2.58±0.64. In all the pyrrhotite-chalcopyrite pairs studied, the two minerals are very close to each other both in sulfur isotope and Se/S ratios. The mean 34Spo-cp value is –0.08±0.16 per mil and the mean Dcp-po value is 0.99±0.05. The results have been discussed in comparison with similar data obtained for the Hitachi deposits of Kieslager-type, Japan (Yamamoto et al. 1983).  相似文献   
33.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   
34.
Abstract   The age of the Yokawa Formation of the Cenozoic Kobe Group distributed in Hyogo Prefecture of western Japan based on mammalian fossils is discussed. Two fossil dental specimens of terrestrial mammals discovered from the lowest part of the Yokawa Formation in the Sanda area are described. These two fossils described here are: (i) a right mandibular fragment with p2–m3 of Bothriodon sandaensis sp. nov. (selenodont anthracotheriid artiodactyl), which appears to be the most primitive among the species of the genus; and (ii) right m1–m3 of cf. Hyrachyus sp. (primitive rhinocerotoid perissodactyl). In the lower part of the Yokawa Formation, Zaisanamynodon (amynodontid perissodactyl) was previously reported. The morphology ('evolutionary stage') of B. sandaensis is indicative of the latest Middle to Late Eocene, that of cf. Hyrachyus sp. is indicative of the Early to Middle Eocene, and Zaisanamynodon is indicative of the Late Middle to Late Eocene. Therefore, the fossil mammals of the Yokawa Formation indicate an latest Middle Eocene ( ca . 38 Ma) correlation for the lower part of the formation, as a working hypothesis. Although the resolution of the geological age based on these mammalian fossils is relatively low compared to that based on marine index fossils, this result is concordant with the recent radiometric correlation of the lower part of the Yokawa Formation in the Sanda area.  相似文献   
35.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   
36.
The Shinjima Pumice is a fines-depleted pumice lapilli tuff emplaced several thousands years ago at about 100–140 m below sea level. This 40-m-thick deposit comprises many poorly defined flow units, which are 1–10 m thick, diffusely stratified and showing upward-coarsening of pumice clasts with a sharp to transitional base. Parallel to wavy diffuse stratifications are commonly represented by alignment of pumice clasts, especially in the lower half of the flow units. Pumice clasts of block to coarse-lapilli size commonly have thermal-contraction cracks best developed on the surfaces, demonstrating that they were hot but cooled down to the ambient temperatures prior to their emplacement. These features are suggestive of the direct origin of the Shinjima Pumice from subaqueous eruptions. A theoretical consideration on the behavior of subaqueous eruption plumes and hot and cold pumice clasts suggests that subaqueous eruption plumes commonly collapse by turbulent mixing with the ambient water and are transformed into water-logged mass flows.  相似文献   
37.
The analysis of sand samples by x-ray fluorescent spectroscopy (XRF) gives the ratio of the geochemical elements to construct the sand samples. The x-ray analysis therefore shows the geochemical characteristics of sand in the sampled area. In this study, sand is sampled on coasts and rivers of the Noto Peninsula to determine the geochemical elements and to show the geological characteristics that occur, especially iron and calcium. The experiments show the effect of rivers and Kotogahama beach on iron and calcium, respectively. Applying the method of ratio matching to the measured data of the geochemical elements, the direction of movement of sand on the coast is determined by considering the correlation matrix and the ratio of geochemical elements between sand samples at two locations. The predominant longshore direction movement of sand offshore in the study area is from south to north. Sand in rivers is not directly transported to adjacent beaches; however, offshore sand is transported to beaches. The estimated direction of movement of sand longshore near coastal structures agrees with observations. The proposed method to predict the direction of movement of sand gives the correct one in comparison with the observed data in rivers.  相似文献   
38.
S. Yamamoto 《Icarus》2002,158(1):87-97
This paper reports the results of experiments on projectile impact into regolith targets at various impact angles. Copper projectiles of 240 mg are accelerated to 197 to 272 m s−1 using an electromagnetic gun. The ejecta are detected by thin Al foil targets as secondary targets, and the resulting holes on the foil are measured to derive the spatial distribution of the ejecta. The ejecta that penetrated the foil are concentrated toward the downrange azimuths of impacting projectiles in oblique impacts. In order to investigate the ejecta velocity distribution, the nondimensional volume of ejecta with velocities higher than a given value is calculated from the spatial distribution. In the case of the vertical impact of the projectile, most ejecta have velocities lower than 24% of the projectile speed (∼50 m s−1), and there are only several ejecta with velocities higher than 72 m s−1. This result confirms the existence of an upper limit to the ejection velocity in the ejecta velocity distribution (Hartmann cutoff velocity) (W. K. Hartmann, 1985, Icarus63, 69-98). On the other hand, it is found that, in the oblique impacts, there are a large number of ejecta with velocities higher than the Hartmann cutoff velocity. The relative quantity of ejecta above the Hartmann cutoff velocity increases as the projectile impact angle decreases. Taking these results with the results of S. Yamamoto and A. M. Nakamura (1997, Icarus128, 160-170) from impact experiments using an impact angle of 30°, it can be concluded that the ejecta from these regolith targets exhibit a bimodal velocity distribution. Below a few tens of m s−1, we see the expected velocity distribution of ejecta, but above this velocity we see a separate group of high-velocity ejecta.  相似文献   
39.
Satoshi  Hirano  Yoshiaki  Araki  Koji  Kameo  Hiroshi  Kitazato  Hideki  Wada 《Island Arc》2006,15(3):313-327
Abstract   A drilling and coring investigation of the Sagara oil field, central Honshu, Japan, was conducted to contribute to the understanding of hydrocarbon migration processes in a forearc basin. Core samples were analyzed to determine lithology, physical properties (specifically gas permeability) and the characteristics of oil occurrence. Gas permeability values greater than approximately 10−11 m2 constitute the basic precondition for any lithology to serve as a potential fluid conduit or reservoir in the Sagara oil field. Cores recovered from the 200.6-m-deep borehole were primarily composed of alternating siltstone, sandstone and conglomerate, all of which are correlated to the late Miocene Sagara Group. Both sandstone and conglomerate can be classified into two types, carbonate-cemented and poorly to non-cemented, based on matrix material characteristics. Oil stains are generally absent in the former lithology and more common in the latter. Variations in physical properties with respect to gas permeability values are directly related to the presence and character of carbonate cement, with higher permeabilities common in poorly to non-cemented rocks. The relationships between lithology, oil-staining, cementation and permeability indicate that cementation preceded oil infiltration and that cementation processes exerted significant control on the evolution of the reservoir.  相似文献   
40.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号