首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24680篇
  免费   185篇
  国内免费   923篇
测绘学   1413篇
大气科学   1981篇
地球物理   4595篇
地质学   11660篇
海洋学   1070篇
天文学   1660篇
综合类   2162篇
自然地理   1247篇
  2021年   7篇
  2019年   2篇
  2018年   4766篇
  2017年   4042篇
  2016年   2582篇
  2015年   244篇
  2014年   92篇
  2013年   42篇
  2012年   1002篇
  2011年   2748篇
  2010年   2034篇
  2009年   2324篇
  2008年   1902篇
  2007年   2370篇
  2006年   67篇
  2005年   211篇
  2004年   414篇
  2003年   419篇
  2002年   251篇
  2001年   54篇
  2000年   57篇
  1999年   16篇
  1998年   26篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   25篇
  1980年   22篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   8篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Statistical seasonal prediction models for the Arctic sea ice concentration (SIC) were developed for the late summer (August-October) when the downward trend is dramatic. The absorbed solar radiation (ASR) at the top of the atmosphere in June has a significant seasonal leading role on the SIC. Based on the lagged ASR-SIC relationship, two simple statistical models were established: the Markovian stochastic and the linear regression models. Crossvalidated hindcasts of SIC from 1979 to 2014 by the two models were compared with each other and observation. The hindcasts showed general agreement between the models as they share a common predictor, ASR in June and the observed SIC was well reproduced, especially over the relatively thin-ice regions (of one- or multi-year sea ice). The robust predictability confirms the functional role of ASR in the prediction of SIC. In particular, the SIC prediction in October was quite promising probably due to the pronounced icealbedo feedback. The temporal correlation coefficients between the predicted SIC and the observed SIC were 0.79 and 0.82 by the Markovian and regression models, respectively. Small differences were observed between the two models; the regression model performed slightly better in August and September in terms of temporal correlation coefficients. Meanwhile, the prediction skills of the Markovian model in October were higher in the north of Chukchi, the East Siberian, and the Laptev Seas. A strong non-linear relationship between ASR in June and SIC in October in these areas would have increased the predictability of the Markovian model.  相似文献   
122.
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km-1 on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather.  相似文献   
123.
Surface displacements and gravity changes due to volcanic sources are influenced by medium properties. We investigate topographic, elastic and self-gravitation interaction in order to outline the major factors that are significant in data modelling. While elastic-gravitational models can provide a suitable approximation to problems of volcanic loading in areas where topographic relief is negligible, for prominent volcanoes the rough topography could affect deformation and gravity changes to a greater extent than self-gravitation. This fact requires the selection, depending on local relief, of a suitable model for use in the interpretation of surface precursors of volcanic activity. We use the three-dimensional Indirect Boundary Element Method to examine the effects of topography on deformation and gravity changes in models of magma chamber inflation/deflation. Topography has a significant effect on predicted surface deformation and gravity changes. Both the magnitude and pattern of the geodetic signals are significantly different compared to half-space solutions. Thus, failure to account for topographic effects in areas of prominent relief can bias the estimate of volcanic source parameters, since the magnitude and pattern of deformation and gravity changes depend on such effects.  相似文献   
124.
The Dipole Mode of the Summer Rainfall over East China during 1958–2001   总被引:2,自引:0,他引:2  
By examining the second leading mode(EOF2)of the summer rainfall in China during 1958–2001 and associated circulations,the authors found that this prominent mode was a dipole pattern with rainfall decreasing to the north of the Yangtze River and increasing to the south.This reverse relationship of the rainfalls to the north and to the south of the Yangtze River was related with the meridional circulations within East Asia and the neighboring region,excited by SST in the South China Sea-northwestern Pacific....  相似文献   
125.
UV attenuation in the cloudy atmosphere   总被引:1,自引:0,他引:1  
Ultraviolet (UV) energy absorption plays a very important role in the Earth–atmosphere system. Based on observational data for Beijing, we suggest that some atmospheric constituents utilize or transfer UV energy in chemical and photochemical (C&P) reactions, in addition to those which absorb UV energy directly. These constituents are primarily volatile organic compounds (VOCs) emitted from both vegetative and anthropogenic sources. The total UV energy loss in the cloudy atmosphere for Beijing in 1990 was 78.9 Wm−2. This attenuation was caused by ozone (48.3 Wm−2), other compounds in the atmosphere (26.6 Wm−2) and a scattering factor (4.0 Wm−2). Our results for a cloudy atmosphere in the Beijing area show that the absorption due to these other compounds occurs largely through the mediation of water vapor. This fraction of energy loss has not been fully accounted for in previous models. Observations and previous models results suggest that 1) a cloudy atmosphere absorbs 25∼30 Wm−2 more solar shortwave radiation than models predict; and 2) aerosols can significantly decrease the downward mean UV-visible radiation and the absorbed solar radiation at the surface by up to 28 and 23 Wm−2, respectively. Thus, quantitative study of UV and visible absorption by atmospheric constituents involved in homogeneous and heterogeneous C&P reactions is important for atmospheric models.  相似文献   
126.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   
127.
Characteristics of carbonyl compounds in ambient air of Shanghai,China   总被引:3,自引:0,他引:3  
The levels of carbonyl compounds in Shanghai ambient air were measured in five periods from January 2007 to October 2007 (covering winter, high-air-pollution days, spring, summer and autumn). A total of 114 samples were collected and eighteen carbonyls were identified. Formaldehyde, acetaldehyde and acetone were the most abundant carbonyls and their mean concentrations of 19.40 ± 12.00, 15.92 ± 12.07 and 11.86 ± 7.04 μg m−3 respectively, in the daytime for five sampling periods. Formaldehyde and acetaldehyde showed similar diurnal profiles with peak mixing ratios in the morning and early afternoon during the daytime. Their mean concentrations were highest in summer and lowest in winter. Acetone showed reversed seasonal variation. The high molecular weight (HMW, ≥C5) carbonyls also showed obvious diurnal variations with higher concentrations in the daytime in summer and autumn, while they were all not detected in winter. Formaldehyde and acetaldehyde played an important role in removing OH radicals in the atmosphere, but the contribution of acetone was below 1%. The carbonyls levels in high-air-pollution days were reported. More carbonyl species with higher concentrations were found in high-air-pollution days than in spring. These carbonyls were transported with other pollutants from north and northwest in March 27 to April 2, 2007 and then mixed with local sources. Comparing with Beijing and Guangzhou, the concentrations of formaldehyde and acetaldehyde in Shanghai were the highest, which indicated that the air pollution in Shanghai was even worse than expected.  相似文献   
128.
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.  相似文献   
129.
General purpose Computational Fluid Dynamics (CFD) solvers are frequently used in small-scale urban pollution dispersion simulations without a large extent of ver- tical flow. Vertical flow, however, plays an important role in the formation of local breezes, such as urban heat island induced breezes that have great significance in the ventilation of large cities. The effects of atmospheric stratification, anelasticity and Coriolis force must be taken into account in such simulations. We introduce a general method for adapting pressure based CFD solvers to atmospheric flow simulations in order to take advantage of their high flexibility in geometrical modelling and meshing. Compressibility and thermal stratification effects are taken into account by utilizing a novel system of transformations of the field variables and by adding consequential source terms to the model equations of incompressible flow. Phenomena involving mesoscale to microscale coupled effects can be analyzed without model nesting, applying only local grid refinement of an arbitrary level. Elements of the method are validated against an analytical solution, results of a reference calculation, and a laboratory scale urban heat island circulation experiment. The new approach can be applied with benefits to several areas of application. Inclusion of the moisture transport phenomena and the surface energy balance are important further steps towards the practical application of the method.  相似文献   
130.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号