首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   10篇
  国内免费   4篇
测绘学   10篇
大气科学   18篇
地球物理   57篇
地质学   123篇
海洋学   15篇
天文学   5篇
综合类   7篇
自然地理   8篇
  2023年   1篇
  2022年   8篇
  2021年   10篇
  2020年   21篇
  2019年   4篇
  2018年   26篇
  2017年   22篇
  2016年   29篇
  2015年   12篇
  2014年   14篇
  2013年   21篇
  2012年   13篇
  2011年   17篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1976年   1篇
排序方式: 共有243条查询结果,搜索用时 125 毫秒
91.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   
92.
Water resources management is an important driver in social and economic development. Water shortage is one of the most critical issues threatening human welfare, public health, and ecosystems. This issue has turned into a major challenge in many river basins all around the world due to the imbalance in water supply and demand. Use of simulation models can be effective tools in providing water managers with scientifically supported decisions in dealing with complex and uncertain water resource systems. System dynamics approach serves as a management tool and may play an important role in understanding the cause–effect in water resources systems. In the present study, system dynamics approach was applied to simulate management strategies dealing with Tehran metropolitan water resources systems. In the developed model, the trend of water storage in the next 30-year period and the effectiveness of water supply strategies were simulated. The results showed that, despite the growing shortage of the water resources, optimal use of existing resources under appropriate strategies could reduce water deficit within the next 30 years.  相似文献   
93.
Clouds can influence climate through many complex interactions within the hydrological cycle. Due to the important effects of cloud cover on climate, it is essential to study its variability over certain geographical areas. This study provides a spatial and temporal distribution of sky conditions, cloudy, partly cloudy, and clear days, in Iran. Cloud fraction parameters were calculated based on the cloud product(collection 6_L2) obtained from the Moderate Resolution Imaging Spectroradiometer(MODIS) sensors on board the Terra(MOD06) and Aqua(MYD06) satellites. The cloud products were collected daily from January 1, 2003 to December 31, 2014(12 years) with a spatial resolution of 5 km × 5 km. First, the cloud fraction data were converted into a regular geographic coordinate network over Iran. Then, the estimations from both sensors were analyzed. Results revealed that the maximum annual frequency of cloudy days occurs along the southern shores of the Caspian Sea, while the minimum annual frequency occurs in southeast Iran. On average, the annual number of cloudy and clear-sky days was 88 and 256 d from MODIS Terra, as compared to 96 and 244 d from MODIS Aqua. Generally, cloudy and partly cloudy days decrease from north to south, and MODIS Aqua overestimates the cloudy and partly cloudy days compared to MODIS Terra.  相似文献   
94.
In the recent years,the Red Sea coast of Yemen has been severely affected by intensive anthropogenic activities.The current study constitutes a thorough inquiry to evaluate the extent of heavy metals pollution in Yemen's Red Sea coast sediment and identifies the possible sources of pollution.The concentrations of five metals(copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),and nickel(Ni))collected from nine sites along the Red Sea coast of Yemen were assessed using an atomic absorption spectrophotometer(ASS).Sediment quality indices,such as the sediment quality guidelines(SQGs),potential ecological risk(RI),contamination factor(CF),pollution load index(PLI),geoaccumulation index(Igeo),and modified degree of contamination(mCd)were computed.In addition,multivariate statistical techniques(principal component analysis(PCA),hierarchical cluster analysis,and Pearson's correlation analysis)were applied to identify the potential sources of metals.The mean concentrations of Cu,Zn,Cd,Pb,and Ni were 51.3,61.9,4.02,9.9,and 33.4 mg/kg dry wt,respectively.The spatial distribution revealed that the metals concentrations were high at the middle zone and low southward of Hodeida city.According to the SQGs,the adverse biological effects of metals were occasionally associated with Cu and Cd,frequently associated with Ni,and not expected to occur with Zn and Pb.The RI indicated that the sediment of the studied sites pose low(RI<50)to considerable(100≤RI<200)ecological risk.The mean effect range-median quotient(M-ERM-Q)indicated that the combination of the studied metals had the toxicity probability of 21%at all studied sites.Igeo and CF indicated that the metals concentrations were in the descending order of:Zn>Ni>Pb>Cd>Cu,whereas the PLI and mCd indicated that Ras Isa(Site 5)and Urj village(Site 6)were the most polluted sites.PCA,cluster analysis,and correlation analysis found that Cd,Pb,and Ni mostly originated from anthropogenic sources while Cu and Zn were mainly derived from natural sources.Thus,it is evident that the intensive anthropogenic activities had negative influence on metals accumulation in the sediment of the Red Sea coast of Yemen leading to detrimental effects to the whole ecosystem.These comprehensive findings provide valuable information and data for future monitoring studies regarding heavy metals pollution and sediment quality at the Red Sea coast of Yemen.  相似文献   
95.
In the current study the application of organo‐modified bentonite for the adsorption of mycotoxins (aflatoxin B1, citrinin, patulin, and zearalenone) is presented. The modification of clays is carried out using benzyl‐tri‐n‐butyl ammonium bromide (BTB), benzethonium chloride (BTC), and dioctyl sodium sulfosuccinate (DSS). Various experimental parameters such as pH, time, adsorbent dose, and mycotoxins concentration are thoroughly studied. The modified clays (B‐BTB, B‐BTC and B‐DSS) are characterized by X‐ray fluorescence, X‐ray diffraction, and Fourier transform infrared spectroscopy. The results depicted the high detoxification efficiency (≈99%) of modified clays for the removal of mycotoxins under optimized conditions (pH 5, time: 30 min, adsorbent amount: 50 mg). The adsorption capacities of modified clays are found in the order of: B‐BTC (AFB1: 18.02, CIT: 18.35, PAT: 18.21, ZEA: 18.09 mg g?1) > B‐BTB (AFB1: 17.7, CIT: 18.11, PAT: 17.95, ZEA: 17.90 mg g?1) > B‐DSS (AFB1: 17.5, CIT: 18.02, PAT: 17.86, ZEA: 17.80 mg g?1). The obtained results fitted well with thermodynamic, isothermal (Langmuir) and pseudo‐second order kinetics. Low cost organo‐modified bentonite shows the promise in mitigating mycotoxin contamination, which could improve food safety and reduce environmental contamination.  相似文献   
96.
A systematic study of the chemo-isotopic characteristics and origin of the groundwater was carried out at six major qanats in the hyper-arid Gonabad area, eastern Iran. These qanats as a sustainable groundwater extraction technology have a long history, supporting human life for more than a thousand years in this region. The Gonabad qanats are characterized by outlet electrical conductivity (EC) values of 750 to 3900 µS/cm and HCO3-Na-Mg and Cl-Na water types. The Gonabad meteoric water line (GnMWL) was drawn at the local scale as δ2H = 6.32×δ18O + 8.35 (with R2 = 0.90). It has a lower slope and intercept than the global meteoric water line due to different water vapor sources and isotope kinetic fractionation effects during precipitation in this arid region. The altitude effects on isotopic content of precipitation data were derived as δ18O = (−0.0031 × H(m.a.s.l))−1.3). The δ2H and δ18O isotopes signatures demonstrate a meteoric origin of the groundwater of these qanats. The shift of the qanat's water samples from the local meteoric water line (LMWL) in a dry period with higher temperatures is most probably due to evaporation during the infiltration process and water movement in qanat gallery. Based on the isotopic results and mass balance calculations, the qanats are locally recharged from an area between 2000 to 2400 m.a.s.l of nearby carbonate formations and coarse alluvial sediments. The dissolution of evaporate interlayers in Neogene deposits deteriorates the groundwater quality, especially in Baidokht qanat.  相似文献   
97.
Organic contaminants present as nonaqueous phase liquids (NAPLs) in the subsurface often pose a long-term risk to human health and the environment. Investigating the distribution of NAPLs in porous media remains a major challenge in risk assessment and management of contaminated sites. Conventional soil coring and monitoring wells have been widely used over past decades as the primary means of subsurface investigation to determine NAPL extent. Known limitations of conventional approaches have led us to explore an alternative or a complementary technique to provide high-quality information of NAPL source zone architecture. This work advances an imaging tool for a variety of organic NAPL contaminants in unconsolidated soils through magnetic resonance imaging (MRI) of frozen cores. Using trichloroethylene (TCE) and o-xylene as model species, we illustrate that discriminatory freezing of water, while keeping the NAPL in a liquid state, enables high-resolution qualitative delineation of NAPL distribution within porous media. This novel approach may help improve site conceptual models and consequentially lead to highly tailored, more efficient remedial measures.  相似文献   
98.
Topography can have significant effects on seismic ground response during an earthquake because topographic irregularities cause considerable differences between the seismic waves emitted by the source and the waves reaching the ground surface. When a seismic motion happens in a topographically irregular area, seismic waves are trapped and reflected between the topographic features. Therefore, the interaction between topographies can amplify seismic ground response. In order to reveal how interaction between topographies influences seismic response, several numerical finite element studies have been performed by using the ABAQUS program. The results show that topographic features a greater distance between the seismic source and the site would cause greater seismic motion amplification and is perceptible for the hills far away from the source and the ridges. Also, site acceleration response is impacted by surrounding topography further than site velocity and displacement response.  相似文献   
99.
The aim of this paper is to evaluate the impacts of land use change on soil loss. Soil loss was quantified using the revised universal soil loss equation model in Darabkola catchment. Land use maps of 1992, 1998 and 2012 were derived from Landsat Thematic Mapper data. The mean annual soil loss was therefore determined for these years. The results showed open-canopy forest area decreased by 36% between 1992 and 1998. Likewise, the decreasing trend of forest lands which are near to residential areas has continued from 1795 ha in 1998 to 1765 ha in 2012. Also the results indicate that the maximum annual soil loss ranged from 5.06, 6.19 and 15.23 ton h?1 y?1 in 1992, 1998 and 2012, respectively. Also, by assuming that all watershed conditions and land uses be constant in the future, then the area of close- and open-canopy forest and dry agricultural lands will be 23.23, 2.88 and 29.89 ha in 2040, respectively.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号