首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   3篇
  国内免费   3篇
大气科学   1篇
地球物理   22篇
地质学   25篇
海洋学   7篇
天文学   81篇
综合类   1篇
自然地理   13篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   9篇
  2007年   11篇
  2006年   5篇
  2005年   11篇
  2004年   10篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1974年   5篇
排序方式: 共有150条查询结果,搜索用时 281 毫秒
91.
The object of this paper is to develop a suitable statistical procedure to evaluate clean-up standards athazardous waste sites.Under the assumptions that contaminant masses at a site follow a gammadistribution and that the data from the pre-remediation baseline sample as well as from the interim orfinal sample taken after a certain period of operation are both distributed as gamma with the same shapeparameter but different scale parameters,we derive a uniformly most powerful unbiased test of thehypothesis that a specified percentage of contaminant mass has been reduced.A large-sampleapproximation of the exact test procedure and a comparison with the likelihood ratio test are provided.  相似文献   
92.
The recently developed first-order reversal curve (FORC) technique for rapidly examining magnetic domain state has great potential for paleomagnetic and environmental magnetic investigations. However, there are still some gaps in the basic understanding of FORC diagrams, in particular the behavior of pseudo-single-domain (PSD) grains and the contribution of magnetostatic interactions. In this paper we address some of these problems. We report the first FORC diagrams measurements on narrowly sized and well-characterized synthetic PSD through multidomain (MD) magnetite samples. The FORC diagrams evolve with grain size from single-domain (SD)-like to MD-like through the PSD grain size range. Since each sample contains grains of essentially a single size, individual PSD grains evidently contain contributions from both SD-like and MD-like magnetic moments, in proportions that vary with grain size; the evolving FORC diagrams cannot be due to physical mixtures of SD and MD grains of widely different sizes. The FORC diagrams were all asymmetric. Small PSD samples have FORC diagrams with a distinctive closed-contour structure. The distributions of the larger MD grains display no peak, and lie closer to the interaction-field axis. To assess the effect of magnetostatic interactions, we measured FORC diagrams between room temperature and the Curie temperature. On heating the FORC distributions contract without changing shape until ∼500°C. Above this temperature the diagrams become more MD-like, and in addition become more symmetric. The temperature dependence of the interaction-field parameter is proportional to that of the saturation magnetization, in accordance with Néel’s interpretation of the Preisach diagram. The decrease in asymmetry with heating suggests that the origin of the asymmetry lies in magnetostatic interactions. The magnetic hysteresis parameters as a function of temperature were determined from the FORC curves. As the grain size decreased the normalized coercive force was found to decrease more rapidly with temperature.  相似文献   
93.
We present a quantitative relationship between blocking temperature and time that, in principle, provides a calibration of thermal remagnetization in nature. For a given metamorphic temperature-time regime, one can decide whether a given laboratory blocking temperature (or for paleointensity work, a range of blocking temperatures) is consistent with primary natural remanence (NRM) or with a metamorphic overprint. Independent of the domain structure or the chemical composition of the magnetic minerals, two general types of behaviour are predicted. If the primary NRM possesses laboratory (or primary cooling) blocking temperatures within 100°C or so of the Curie temperature, thermal remagnetization at lower temperatures, even over times as long as 106 years, is improbable. If the blocking temperatures are lower, viscous remagnetization is pronounced at temperatures well below those indicated by laboratory thermal demagnetization. An approximate scale of the “survival potential” of primary NRM in rocks of different metamorphic grades indicates that primary paleointensities are unlikely to be recovered from rocks metamorphosed above high-greenschist facies if the predominant magnetic mineral is nearly pure magnetite, or above middle-amphibolite facies if nearly pure hematite is predominant. Evidence from laboratory experiments and paleomagnetic field studies in metamorphic regions suggests, however, that these survival estimates are unduly optimistic. Chemical remagnetization through the destruction of primary magnetic minerals, and not thermal remagnetization, probably sets an effective upper temperature for the survival of primary NRM.  相似文献   
94.
K-Ar dating on a suite of volcanic rocks from the island of Principe gives the following chronology.
  1. Basal palagonite breccia (30.6 ± 2.1 Ma).
  2. Older Lava Series (OLS) basalt (23.6±0.7 Ma) and hawaiite (19.1±0.5 Ma).
  3. Younger Lava Series (YLS) nephelinite (5.60±0.32 Ma) and basanite (3.51 ±0.15).
  4. Intrusive phonolite (5.32±0.17 Ma, 5.48±0.19 Ma), tristanite (4.89±0.15 Ma) and trachyphonolite (6.93±0.68 Ma) plugs.
Phonolites and YLS samples plot on a 5.9±0.3 Ma Rb-Sr isochron. The tristanite-trachy-phonolite suite samples also lie on this isochron. This lends support to the suggestion that the YLS basanite magmas were parental to the phonolites but rules out a similar relationship between the OLS magmas and the tristanite-trachyphonolite suite. The mean initial 87Sr/86Sr ratio for the YLS nephelinites and basanites is 0.70297. The basalts and hawaiites of the OLS show a positive 87Sr/86Sr vs. Rb/Sr correlation which may be interpreted as a 244±43 Ma pseudoisochron. This could be the result of a large-scale heterogeneity generated in the mantle during the early stages in the break-up of Gondwanaland. The mean initial 87Sr/ 86Sr ratio (at 21 Ma) for the OLS (0.70326) is significantly higher than that for the YLS and implies an isotopically distinct mantle source.  相似文献   
95.
The pseudo-single-domain (PSD) intensity and stability of thermoremanent magnetization (TRM) in multidomain magnetite grains 0.05–15 μm in size are attributed to residual magnetic moments not removed by demagnetization. Barkhausen discreteness in domain wall positions is a possible source of such moments, but the observed grain size and applied field dependences of TRM in the lower PSD range are more convincingly explained by a new theory (F.D. Stacey and S.K. Banerjee, 1974) in which the moments of domain walls and the surface terminations of domain walls play a central role. The magnitudes of PSD moments and the average number of moments per grain required by this theory are deduced from low-field (0–25 Oe) TRM measurements on magnetite grains of controlled sizes between 0.04 and 0.22 μm. The predicted maximum PSD moment is about equal to the saturation moment in grains ≤ 0.1 μm in size but is only 10% of the saturation moment in 0.22-μm grains. Since blocking temperature and hysteresis data independently suggest two-domain structure in 0.22-μm grains and wall-like domain structure in smaller grains, the predicted PSD moments are quantitatively reasonable.  相似文献   
96.
AF (alternating field) demagnetization, ARM (anhysteretic remanent magnetization) and strong-field hysteresis properties of a large collection of mostly continental igneous rocks are reported here. The collection included rocks whose magnetic carriers were believed from previous work to be of one of three types: MD (multidomain); SD/PSD (single-domain/pseudo-single-domain); or a bimodal mixture of MD grains (e.g., discrete opaques) and SD/PSD material (e.g., silicate inclusions). Two series of subaerial basalts with a full range of deuteric oxidation classes included examples of all three classes of behaviour. SD/PSD rocks have relatively hard inflected AF decay curves (decay rate initially increasing, then decreasing), MD rocks have soft, exponential-like decay curves, and bimodal rocks have a combination of these characteristics. Relative hardnesses of normalized decay curves of remanences acquired in weak, intermediate and strong fields (the Lowrie-Fuller test) are also distinctively different for the three classes, and the results support the theory developed in an accompanying paper [1] that Lowrie-Fuller characteristics are an expression of the shapes of decay curves. The Lowrie-Fuller test, although its result can be expressed as a numerical parameter, is not capable of fine-scale classification of domain structure or grain size. The shape of the ARM induction curve does have a quasi-continuous variation with grain size, however. The parameter χar/Jrs (initial anhysteretic susceptibility normalized to saturation remanence), which is easily measured with standard paleomagnetic instrumentation, is potentially useful for magnetic granulometry, although χar itself was not diagnostic of grain size.  相似文献   
97.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   
98.
99.
We present the results of a comprehensive re-analysis of the images of a virtually complete sample of 28 powerful 3CR radio galaxies with redshifts 0.6< z <1.8 from the Hubble Space Telescope ( HST ) archive. Using a two-dimensional modelling technique we have derived scalelengths and absolute magnitudes for a total of 16 3CR galaxies with a median redshift of z =0.8. Our results confirm the basic conclusions of Best, Longair & Röttgering in that we also find z =1 3CR galaxies to be massive, well-evolved ellipticals, the infrared emission of which is dominated by starlight. However, we in fact find that the scalelength distribution of 3CR galaxies at z ≃1 is completely indistinguishable from that derived for their low-redshift counterparts from our own recently completed HST study of active galactic nuclei hosts at z ≃0.2. There is thus no evidence that 3CR radio galaxies at z ≃1 are dynamically different from 3CR galaxies at low redshift. Moreover, for a 10-object subsample we have determined the galaxy parameters with sufficient accuracy to demonstrate, for the first time, that the z ≃1 3CR galaxies follow a Kormendy relation that is indistinguishable from that displayed by low-redshift ellipticals if one allows for purely passive evolution. The implied rather modest level of passive evolution since z ≃1 is consistent with that predicted from spectrophotometric models provided one assumes a high formation redshift ( z ≥4) within a low-density universe. We conclude that there is no convincing evidence for significant dynamical evolution among 3CR galaxies in the redshift interval 0< z <1, and that simple passive evolution remains an acceptable interpretation of the K – z relation for powerful radio galaxies.  相似文献   
100.
Between December 1997 and March 1998 Equator-S made a number of excursions into the dawn-side magnetosheath, over a range of local times between 6:00 and 10:40 LT. Clear mirror-like structures, characterised by compressive fluctuations in |B| on occasion lasting for up to 5 h, were observed during a significant fraction of these orbits. During most of these passes the satellite appeared to remain close to the magnetopause (within 1–2 Re), during sustained compressions of the magnetosphere, and so the characteristics of the mirror structures are used as a diagnostic of magnetosheath structure close to the magnetopause during these orbits. It is found that in the majority of cases mirror-like activity persists, undamped, to within a few minutes of the magnetopause, with no observable ramp in |B|, irrespective of the magnetic shear across the boundary. This suggests that any plasma depletion layer is typically of narrow extent or absent at the location of the satellite, at least during the subset of orbits containing strong magnetosheath mirror-mode signatures. Power spectra for the mirror signatures show predominately field aligned power, a well defined shoulder at around 3–10 × 10−2 Hz and decreasing power at higher frequencies. On occasions the fluctuations are more sinusoidal, leading to peaked spectra instead of a shoulder. In all cases mirror structures are found to lie approximately parallel to the observed magnetopause boundary. There is some indication that the amplitude of the compressional fluctuations tends to be greater closer to the magnetopause. This has not been previously reported in the Earth’s magnetosphere, but has been suggested in the case of other planets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号