首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  国内免费   1篇
地球物理   3篇
地质学   14篇
海洋学   5篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2014年   3篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
The Quaternary     
In late July 2007, some 1100 Quaternary scientists gathered for a week-long conference in the tropical city of Cairns in northeast Australia for the 17th quadrennial congress of the International Union for Quaternary Research (INQUA). Conference presentations were on topics in such diverse fields as archaeology, stratigraphy, geomorphology, palaeontology, geochemistry, hydrology, climate change and geochronology. To an outsider, the unifying theme of an INQUA Congress may be difficult to grasp, but diversity has always been a characteristic of Quaternary research, more so than for any other major period of the geological time scale.  相似文献   
22.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号