首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   6篇
  国内免费   1篇
测绘学   3篇
大气科学   2篇
地球物理   29篇
地质学   53篇
海洋学   5篇
天文学   18篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   8篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有116条查询结果,搜索用时 93 毫秒
101.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   
102.
This paper presents a simplified approach to assess the effects of global warming on global coastal groundwater resources over the next century based on the smallest but necessary number of elements such as rainfall, temperature, hydraulic conductivity of the aquifers, and population changes regarding the consumption of groundwater. The positive aspect in this approach is that there is availability of the above elements in the majority of the planet. Methodology includes a sharp interface concept model and simplified estimation of groundwater recharge using limited climate data. The evaluation shows that the future climate changes would decrease fresh groundwater resources in Central American, South American, South African and Australian regions whereas most of the areas in Asia, except South-East Asia. Combinations of fresh groundwater loss and global population are considered to state the vulnerability of future fresh groundwater supply. Vulnerability assessment shows that South Asia, Central America, North Africa and the Sahara, South Africa and the Middle East countries are highly vulnerable whereas, Northern Europe, Western part of South America, New Zealand and Japan are less vulnerable with respect to future fresh groundwater supply. Further, this paper highlights the necessity Integrated Coastal Management (ICM) practices in these vulnerable coastal regions to ensure the sustainable development in coastal regions.  相似文献   
103.
Geospatial approaches to monitoring and mapping water quality over a wide range of temporal and spatial scales have the potential to save field and laboratory efforts. The present study depicts the estimation of water quality parameters, namely turbidity and phosphate, through regression analysis using the reflectance derived from remote sensing data on the west coast of Mumbai, India. The predetermined coastal water samples were collected using the global positioning system (GPS) and were measured concurrently with satellite imagery acquisition. To study the influence of wastewater, the linear correlations were established between water quality parameters and reflectance of visible bands for either set of imagery for the study area, which was divided into three zones: creek water, shore‐line water and coastal water. Turbidity and phosphate have the correlation coefficients in the range 0.75–0.94 and 0.78–0.98, respectively, for the study area. Negative correlation was observed for creek water owing to high organic content caused by the discharges of domestic wastewater from treatment facilities and non‐point sources. Based on the least square method, equations are formulated to estimate turbidity and phosphate, to map the spatial variation on the GIS platform from simulated points. The applicability of satellite imagery for water quality pattern on the coast is verified for efficient planning and management.  相似文献   
104.
The rivers in Nepal are classified in terms of geographical regions but a more scientific classification such as on the ba-sis of morphology is clearly lacking. This study was done in 9 rivers namely Jhikhukhola of the Koshi system, Aandhikhola, Arungkhola, East Rapti, Karrakhola, Seti and main channel Narayani of the Gandaki system, and two independent systems within Nepal, Bagmati and Tinau. Among the morphologies, river bed or the substratum was taken as the main variable for the analysis which was categ...  相似文献   
105.
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.  相似文献   
106.
Summary The paper is concerned with the investigation of the disturbances of a finite elastic rod within the framework of relativistic mechanics of continua and of relativistic electrodynamics under specified boundary conditions.  相似文献   
107.
The present paper contains extensive tables of the values of theH-functionH(z,<0) and of the moments ofQ(x) (in terms of which the moments ofH(z, ) can be determined) appropriate for transfer of radiation in active amplifying media in which<0. These values have been computed correct to the 7th decimal place for values of in the range (–10–12)-(–1030) and for values of z[0,1] with the aid of a 48-point gaussian quadrature formula.  相似文献   
108.
109.
The decrease and degradation of the tropical forests affect not only the production of timber but also the global environment in a large scale. The ability of soil to sustain and its supply of nutrients to a growing forest are controlled by a complex of biogeochemical processes. The purpose of the present study aims to assess the degraded forest fringe areas, to promote plantations of various types and to evaluate their impacts on the soil nutrients and carbon content accumulation. The soil organic carbon (SOC) and nutrient content were evaluated and compared between plantations of mixed native species (MNS), some native tree species as Shorea robusta, Dalbergia sissoo, Dendrocalamus spp., certain agro‐forestry species and some exotic varieties. The impacts of the plantations on the SOC and the nutrients were firstly analyzed through comprehensive chemical analyses and the results were compared with the soil samples collected prior to plantation forestry. Significant changes were observed in SOC content, in nutrients, and in amounts of exchangeable cations. Soil carbon levels were highest under the MNS, Dendrocalamus and Tectona grandis stands and lowest under D. sissoo and Terminalia arjuna. Total N showed highest levels under Dendrocalamus and Pongamia pinnata and significantly higher in stands of native species; lowest total N level was observed in D. sissoo plantations. The C/N ratios of the soil varied between 9.2 and 13.5 among the exchangeable cations. Ca2+ recorded the maximum levels and Na+ showed the lowest levels.  相似文献   
110.
Representative rainfall thresholds for landslides in the Nepal Himalaya   总被引:14,自引:0,他引:14  
Measuring some 2400 km in length, the Himalaya accommodate millions of people in northern India and Pakistan, Nepal, Bhutan, and parts of other Asian nations. Every year, especially during monsoon rains, landslides and related natural events in these mountains cause tremendous damage to lives, property, infrastructure, and environment. In the context of the Himalaya, however, the rainfall thresholds for landslide initiation are not well understood. This paper describes regional aspects of rainfall thresholds for landslides in the Himalaya. Some 677 landslides occurring from 1951 to 2006 were studied to analyze rainfall thresholds. Out of the 677 landslides, however, only 193 associated with rainfall data were analyzed to yield a threshold relationship between rainfall intensity, rainfall duration, and landslide initiation. The threshold relationship fitted to the lower boundary of the field defined by landslide-triggering rainfall events is = 73.90D− 0.79 (I = rainfall intensity in mm h− 1 and = duration in hours), revealing that when the daily precipitation exceeds 144 mm, the risk of landslides on Himalayan mountain slopes is high. Normalized rainfall intensity–duration relationships and landslide initiation thresholds were established from the data after normalizing rainfall-intensity data with respect to mean annual precipitation (MAP) as an index in which NI = 1.10D− 0.59 (NI = normalized intensity in h− 1). Finally, the role of antecedent rainfall in causing landslides was also investigated by considering daily rainfall during failure and the cumulative rainfall to discover at what point antecedent rainfall plays an important role in Himalayan landslide processes. Rainfall thresholds presented in this paper are generalized so they can be used in landslide warning systems in the Nepal Himalaya.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号