首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84718篇
  免费   1140篇
  国内免费   841篇
测绘学   2390篇
大气科学   6084篇
地球物理   16619篇
地质学   29350篇
海洋学   7590篇
天文学   20047篇
综合类   280篇
自然地理   4339篇
  2022年   479篇
  2021年   836篇
  2020年   910篇
  2019年   1014篇
  2018年   2212篇
  2017年   2085篇
  2016年   2653篇
  2015年   1453篇
  2014年   2502篇
  2013年   4321篇
  2012年   2671篇
  2011年   3481篇
  2010年   3100篇
  2009年   4102篇
  2008年   3530篇
  2007年   3609篇
  2006年   3374篇
  2005年   2509篇
  2004年   2562篇
  2003年   2401篇
  2002年   2360篇
  2001年   2079篇
  2000年   1976篇
  1999年   1680篇
  1998年   1716篇
  1997年   1637篇
  1996年   1369篇
  1995年   1316篇
  1994年   1164篇
  1993年   1047篇
  1992年   977篇
  1991年   980篇
  1990年   996篇
  1989年   891篇
  1988年   853篇
  1987年   945篇
  1986年   869篇
  1985年   1046篇
  1984年   1236篇
  1983年   1061篇
  1982年   1038篇
  1981年   935篇
  1980年   846篇
  1979年   825篇
  1978年   839篇
  1977年   695篇
  1976年   648篇
  1975年   656篇
  1974年   596篇
  1973年   663篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
511.
The Nisyros Volcano (Greece) was monitored by satellite and ground thermal imaging during the period 2000–2002. Three night-scheduled Landsat-7 ETM+ thermal (band 6) images of Nisyros Island were processed to obtain land surface temperature. Ground temperature data were also collected during one of the satellite overpasses. Processed results involving orthorectification and 3-D atmospheric correction clearly show the existence of a thermal anomaly inside the Nisyros Caldera. This anomaly is associated mainly with the largest hydrothermal craters and has land surface temperatures 5–10 °C warmer than its surroundings. The ground temperature generally increased by about 4 °C inside the main crater over the period 2000–2002. Ground thermal images of the hydrothermal Stephanos Crater were also collected in 2002 using a portable thermal infrared camera. These images were calibrated to ground temperature data and orthorectified. A difference of about 0–2 °C was observed between the ground thermal images and the ground temperature data. The overall study demonstrates that satellite remote sensing of low-temperature fumarolic fields within calderas can provide a reliable long-term monitoring tool of dormant volcanoes that have the potential to reactivate. Similarly, a portable thermo-imager can easily be deployed for real-time monitoring using telemetric data transfer. The operational costs for both systems are relatively low for an early warning system.  相似文献   
512.
In this contribution, we extend the existing theory of minimum mean squared error prediction (best prediction). This extention is motivated by the desire to be able to deal with models in which the parameter vectors have real-valued and/or integer-valued entries. New classes of predictors are introduced, based on the principle of equivariance. Equivariant prediction is developed for the real-parameter case, the integer-parameter case, and for the mixed integer/real case. The best predictors within these classes are identified, and they are shown to have a better performance than best linear (unbiased) prediction. This holds true for the mean squared error performance, as well as for the error variance performance. We show that, in the context of linear model prediction, best predictors and best estimators come in pairs. We take advantage of this property by also identifying the corresponding best estimators. All of the best equivariant estimators are shown to have a better precision than the best linear unbiased estimator. Although no restrictions are placed on the probability distributions of the random vectors, the Gaussian case is derived separately. The best predictors are also compared with least-squares predictors, in particular with the integer-based least-squares predictor introduced in Teunissen (J Geodesy, in press, 2006).  相似文献   
513.
When neglecting calibration issues, the accuracy of GPS-based time and frequency transfer using a combined analysis of code and carrier phase measurements highly depends on the noise of the GPS codes. In particular, the pseudorange noise is responsible for day-boundary discontinuities which can reach more than 1 ns in the time transfer results obtained from geodetic analysis. These discontinuities are caused by the fact that the data are analyzed in daily data batches where the absolute clock offset is determined by the mean code value during the daily data batch. This pseudorange noise is not a white noise, in particular due to multipath and variations of instrumental delays. In this paper, the pseudorange noise behavior is characterized in order to improve the understanding of the origin of the large day-boundary discontinuities in the geodetic time transfer results. In a first step, the effect of short-term noise and multipath is estimated, and shown to be responsible for only a maximum of 150 ps (picoseconds) of the day-boundary jumps, with only one exception at NRC1 where the correction provides a jump reduction of 300 ps. In a second step, a combination of time transfer results obtained with pseudoranges only and geodetic time transfer results is used to characterize the long-term evolution of pseudorange errors. It demonstrates that the day-boundary jumps, especially those of large amplitude, can be explained by an instrumental effect imposing a common behavior on all the satellite pseudoranges. Using known influences as temperature variations at ALGO or cable damages at HOB2, it is shown that the approach developed in this study can be used to look for the origin of the day-boundary discontinuities in other stations.  相似文献   
514.
GPS sidereal filtering: coordinate- and carrier-phase-level strategies   总被引:6,自引:1,他引:6  
Multipath error is considered one of the major errors affecting GPS observations. One can benefit from the repetition of satellite geometry approximately every sidereal day, and apply filtering to help minimize this error. For GPS data at 1 s interval processed using a double-difference strategy, using the day-to-day coordinate or carrier-phase residual autocorrelation determined with a 10-h window leads to the steadiest estimates of the error-repeat lag, although a window as short as 2 h can produce an acceptable value with > 97% of the optimal lag’s correlation. We conclude that although the lag may vary with time, such variation is marginal and there is little advantage in using a satellite-specific or other time-varying lag in double-difference processing. We filter the GPS data either by stacking a number of days of processed coordinate residuals using the optimum “sidereal” lag (23 h 55 m 54 s), and removing these stacked residuals from the day in question (coordinate space), or by a similar method using double-difference carrier-phase residuals (observational space). Either method results in more consistent and homogeneous set of coordinates throughout the dataset compared with unfiltered processing. Coordinate stacking reduces geometry-related repeating errors (mainly multipath) better than carrier-phase residual stacking, although the latter takes less processing time to achieve final filtered coordinates. Thus, the optimal stacking method will depend on whether coordinate precision or computational time is the over-riding criterion.  相似文献   
515.
This paper highlights the spatial and temporal variability of atmospheric columnar methane (CH4) concentration over India and its correlation with the terrestrial vegetation dynamics. SCanning IMaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY) on board ENVIronmental SATellite (ENVISAT) data product (0.5° × 0.5°) was used to analyze the atmospheric CH4 concentration. Satellite Pour l'Observation de la Terre (SPOT)-VEGETATION sensor’s Normalized Difference Vegetation Index (NDVI) product, aggregated at 0.5° × 0.5° grid level for the same period (2004 and 2005), was used to correlate the with CH4 concentration. Analysis showed mean monthly CH4 concentration during the Kharif season varied from 1,704 parts per billion volume (ppbv) to 1,780 ppbv with the lowest value in May and the highest value in September. Correspondingly, mean NDVI varied from 0.28 (May) to 0.53 (September). Analysis of correlation between CH4 concentration and NDVI values over India showed positive correlation (r = 0.76; n = 6) in Kharif season. Further analysis using land cover information showed characteristic low correlation in natural vegetation region and high correlation in agricultural area. Grids, particularly falling in the Indo-Gangetic Plains showed positive correlation. This could be attributed to the rice crop which is grown as a predominant crop during this period. The CH4 concentration pattern matched well with growth pattern of rice with the highest concentration coinciding with the peak growth period of crop in the September. Characteristically low correlation was observed (r = 0.1; n = 6) in deserts of Rajasthan and forested Himalayan ecosystem. Thus, the paper emphasizes the synergistic use of different satellite based data in understanding the variability of atmospheric CH4 concentration in relation to vegetation.  相似文献   
516.
Hyperspectral data are generally noisier compared to broadband multispectral data because their narrow bandwidth can only capture very little energy that may be overcome by the self-generated noise inside the sensors. It is desirable to smoothen the reflectance spectra. This study was carried out to see the effect of smoothing algorithms - Fast-Fourier Transform (FFT) and Savitzky–Golay (SG) methods on the statistical properties of the vegetation spectra at varying filter sizes. The data used in the study is the reflectance spectra data obtained from Hyperion sensor over an agriculturally dominated area in Modipuram (Uttar Pradesh). The reflectance spectra were extracted for wheat crop at different growth stages. Filter sizes were varied between 3 and 15 with the increment of 2. Paired t-test was carried out between the original and the smoothed data for all the filter sizes in order to see the extent of distortion with changing filter sizes. The study showed that in FFT, beyond filter size 11, the number of locations within the spectra where the smooth spectra were statistically different from its original counterpart increased to 14 and reaches 21 at the filter size 15. However, in SG method, number of statistically different locations were more than those found in the FFT, but the number of locations did not changing drastically. The number of statistically disturbed locations in SG method varied between 16 and 19. The optimum filter size for smoothing the vegetation spectra was found to be 11 in FFT and 9 in SG method.  相似文献   
517.
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12?C26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6?mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3?mm (unweighted), 4.4?mm (diagonal), 8.6?mm [variance component (VC) estimation], and 8.6?mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.  相似文献   
518.
Tomographic 4D reconstructions of ionospheric anomalies appearing in the high-latitude polar cap region are compared with plasma density measurements by digital ionosonde located near the north magnetic pole at Eureka station and with in situ plasma measurements on-board DMSP spacecraft. The moderate magnetic storm of 14–17 October 2002 is taken as an example of a geomagnetic disturbance which generates large-scale ionospheric plasma anomalies at mid-latitudes and in the polar cap region. Comparison of the GPS tomographic reconstructions over Eureka station with the ionosonde measurements of the F layer peak densities indicates that the GPS tomography correctly predicts the time of arrival and passage of the ionospheric tongue of ionization over the magnetic pole area, although the tomographic technique appears to under-estimate the value of F peak plasma density. Comparison with the in situ plasma measurements by the DMSP SSIES instruments shows that the GPS tomography correctly reproduces the large-scale spatial structure of ionospheric anomalies over a wide range of latitudes from mid-latitudes to the high-latitude polar cap region, though the tomographic reconstructions tend to over-estimate the density of the topside ionosphere at 840 km DMSP orbit. This study is essential for understanding the quality and limitations of the tomographic reconstruction techniques, particularly in high-latitude regions where GPS TEC measurements and other ionospheric data sources are limited.  相似文献   
519.
Talakadu is a well known historic place situated on bank of the river Cauvery in Mysore district of Karnataka. The place is close to concave side of a prominent meander where large amount of sand has accumulated. It is believed that after construction of a reservoir upstream, sand was exposed to wind action burying the structures of Ganga dynasty and other later kingdoms. A number of buried sites have been identified by archaeological excavations conducted so far. Presently the area forms sand dunes with thick plantation cover. Analysis of RADAR data (fine beam RADARSAT and ENVISAT ASAR) led to identifying a hitherto unknown buried channel through the Old Talakadu town adjoining the excavated archaeological sites. The study suggests that RADAR penetration through the plantation canopy seems to have occurred as observed by comparing with corresponding optical data of LISS-IV. Below the canopy, sand and shrubs on top of the channel (topographically low area) are acting as smooth surface providing dark tone on radar imagery. During field validation GPS was extensively used to navigate through the forest canopy and locate the buried channel, excavated archaeological sites as well as other anomalous patterns. Synergistic application of optical (RESOURCESAT-1 LISS-IV and CARTOSAT-1 & 2) and radar (fine beam RADARSAT and ENVISAT ASAR) data led to identifying remote sensing based guides for archaeological exploration. Integration of known archaeological sites with the identified anomalous patterns was done in GIS environment. This study adds on to the knowledge base of the site and compliments already known information and suggested new areas for further archaeological exploration.  相似文献   
520.
The identification of sea-ice has frequently been cited as one of the most important tasks for deriving the sea-ice parameters and to avoid erroneous retrieval of wind vector over sea-ice infested oceans using space-borne scatterometer data. Discrimination between sea-ice and ocean is ambiguous under the high wind and/or thin/scattered ice conditions. The pre-launch technique developed for Oceansat-2, utilizes the dual-polarized QuikSCAT scatterometer data by using the spatio-temporal coherence properties of sea ice in addition to backscatter coefficient and the Active Polarization Ratio. Results were compared with the operational sea-ice products from National Snow and Ice Data Center. The threshold API value of −0.025 was found optimum for sea-ice and ocean discrimination. The overall sea-ice identification accuracy achieved was of the order of 95 per cent, ranging from 92.5% (during December in Southern Hemisphere) to 98% (during March in Northern Hemisphere). The applicability of the algorithm for both the Arctic as well as Antarctic makes it suitable for its operational use with the Oceansat-2 scatterometer data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号