首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53610篇
  免费   697篇
  国内免费   562篇
测绘学   1448篇
大气科学   3799篇
地球物理   9896篇
地质学   19198篇
海洋学   4907篇
天文学   12900篇
综合类   188篇
自然地理   2533篇
  2022年   365篇
  2021年   629篇
  2020年   658篇
  2019年   707篇
  2018年   1582篇
  2017年   1504篇
  2016年   1871篇
  2015年   988篇
  2014年   1746篇
  2013年   2867篇
  2012年   1854篇
  2011年   2373篇
  2010年   2068篇
  2009年   2677篇
  2008年   2295篇
  2007年   2347篇
  2006年   2193篇
  2005年   1621篇
  2004年   1638篇
  2003年   1548篇
  2002年   1472篇
  2001年   1298篇
  2000年   1218篇
  1999年   993篇
  1998年   1039篇
  1997年   947篇
  1996年   816篇
  1995年   782篇
  1994年   685篇
  1993年   604篇
  1992年   592篇
  1991年   593篇
  1990年   622篇
  1989年   493篇
  1988年   504篇
  1987年   528篇
  1986年   487篇
  1985年   610篇
  1984年   673篇
  1983年   590篇
  1982年   561篇
  1981年   499篇
  1980年   469篇
  1979年   477篇
  1978年   458篇
  1977年   368篇
  1976年   345篇
  1975年   357篇
  1974年   308篇
  1973年   342篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
811.
We formulate the modulation of galactic anisotropy of cosmic rays caused by their orbital deflection in the heliomagnetosphere. According to the formulation, the average sidereal i-th harmonic daily variation (i = 1,2,…) produced from the anisotropy from an arbitrary direction can be expressed by a linear combination of three basic vectors for uni-directional anisotropy and five basic vectors for bi-directional anisotropy. These vectors are obtained by calculating trajectories of cosmic rays (20?104GV) in a model magnetosphere having Parker's Archimedian spiral structure with a flat or a wavy neutral sheet in either of two polarity states, one is called “Positive” state (away field in the northern space of the neutral sheet and toward field in the southern space) and the other is called “Negative” state (reversed state of the above). Among general characteristics of the sidereal daily variations, the most remarkable features are: (1) The observable variations in low rigidity (? 2000 GV) can be produced even from an uni-directional anisotropy in the direction of the Earth's rotation axis. These variations are strongly dependent on the polarity state, i.e., they are greater in the Positive state than in the Negative. (2) Those produced from the anisotropy in the Equatorial plane also show the polarity dependence but contrary to the previous case they are greater in the Negative state than in the Positive. Their magnitude in the former state is not so small even in the extremely low rigidity (~ 100 GV) as compared with that in high rigidity region. (3) These general characteristics are not altered by the introduction of the wavy neutral sheet or the magnetic irregularities, but the variations are affected more or less, depending on the heliolatitudinal extent of the wavy sheet or the degree of cosmic ray scattering with the irregularities, (4) Sidereal daily variation for the wavy sheet shows a toward-away field dependence similar to that of Swinson-type of solar origin, but the dependence is predominant in intermediate rigidity region (~ 500 GV), in marked contrast to that of solar origin. (5) Finally, whichever its direction may be, the uni-directional anisotropy produces the sidereal diurnal variation common to two conjugate stations in the Northern and Southern hemisphere. If there is any difference between the observed variations at the stations, it should be interpreted as being due to higher order anisotropy such as the bi-directional anisotropy.  相似文献   
812.
Asymptotic calculations for reflection and transmission coefficients for particles incident on an inhomogeneous plane parallel medium are performed. The medium is assumed to consist of several different optically thick homogeneous layers. Functional relations between the reflection and transmission coefficients for the sublayers are obtained. The invariant embedding concepts are used to calculate the albedo for sublayers. Numerical calculations and comparisons are performed.  相似文献   
813.
We have investigated the out of plane equilibrium points of a passive micron size particle and their stability in the field of radiating binary stellar systems Krüger-60, RW-Monocerotis within the framework of photo-gravitational circular restricted three-body problem. We find that the out of plane equilibrium points (L i , i = 6, 7, 8, 9) may exist for range of β 1 (ratio of radiation to gravitational force of the massive component) values for these binary systems in the presence of Poynting-Robertson drag (hereafter PR-drag). In the absence of PR-drag, we find that the motion of a particle near the equilibrium points L 6,7 is stable in both the binary systems for a specific range of β 1 values. The PR-drag is shown to cause instability of the various out of plane equilibrium points in these binary systems.  相似文献   
814.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
815.
We present submillimetre observations of the   J = 3 → 2  rotational transition of 12CO, 13CO and C18O across over 600 arcmin2 of the Perseus molecular cloud, undertaken with the Heterodyne Array Receiver Programme (HARP), a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with the Submillimetre Common-User Bolometer Array (SCUBA; Hatchell et al.) and the positions of starless and protostellar cores (Hatchell et al.). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species  ([13CO]/[C18O]∼ 7)  and their opacities (typically τ is 0.02–0.22 and 0.15–1.52 for the C18O and 13CO gas, respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond  τ18∼ 0.9  . Assuming the 12CO gas is optically thick, we compute its excitation temperature, T ex (around 8–30 K), which has little correlation with estimates of the dust temperature.  相似文献   
816.
Stellar masses and ages are not directly observable parameters, and the methods used to determine them are based on the calibrating relations. In particular, the mass–luminosity relation, based on the masses of less than 200 well-studied binaries, is virtually the only way to estimate the mass of single stars. Thus, the development of methods for estimating stellar masses with accuracy comparable to direct methods is a problem of vital importance.
Here, we describe a method for estimating stellar masses and ages, which is based on the geometric similarity of evolutionary tracks for the stars at the same evolutionary stage in the Hertzsprung–Russell (HR) diagram. To examine the proposed approach, it has been applied to various test data sets. Application of the method, using synthetic stellar spectra Basel Stellar Library (of theoretical spectra; BaSeL), demonstrates that it allows determination of masses and ages of stars with a predictable distribution of uncertainties.
This statistical approach allows us to demonstrate the viability of the method using it on the set of double-lined eclipsing binaries with intermediate-mass and low-mass components which allows us to compare calculated characteristics with observational ones. As a result, the uncertainties of the stellar masses estimated with the proposed method are comparable with the accuracy of ones obtained from direct observations. This allows us to recommend the method for mass estimates of masses of single stars by the localization in the HR diagram.
As for the ages, the estimates for intermediate-mass stars are more reliable, while those obtained for low-mass stars are very uncertain, due both to slower movement of these stars in the HR diagram with age at stages close to the main sequence and to certain disagreements between theoretical models for this mass range.  相似文献   
817.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   
818.
Based on an analysis of the catalog of magnetic fields, we have investigated the statistical properties of the mean magnetic fields for OB stars. We show that the mean effective magnetic field B of a star can be used as a statistically significant characteristic of its magnetic field. No correlation has been found between the mean magnetic field strength B and projected rotational velocity of OB stars, which is consistent with the hypothesis about a fossil origin of the magnetic field. We have constructed the magnetic field distribution function for B stars, F(B), that has a power-law dependence on B with an exponent of ≈−1.82. We have found a sharp decrease in the function F(B) for B ⩽ 400 G that may be related to rapid dissipation of weak stellar surface magnetic fields.  相似文献   
819.
We analyze the randomness of the sky distribution of cosmic gamma-ray bursts. These events are associated with massive galaxies, spiral or elliptical, and therefore their positions should trace the large-scale structure, which, in turn, could show up in the sky distribution of fluctuations of the cosmicmicrowave background (CMB). We test this hypothesis by mosaic correlation mapping of the distributions of CMB peaks and burst positions, find the distribution of these two signals to be correlated, and interpret this correlation as a possible systematic effect.  相似文献   
820.
A time-dependent model for the energy of a flaring solar active region is presented based on an existing stochastic jump-transition model (Wheatland and Glukhov in Astrophys. J. 494, 858, 1998; Wheatland in Astrophys. J. 679, 1621, 2008 and Solar Phys. 255, 211, 2009). The magnetic free energy of an active region is assumed to vary in time due to a prescribed (deterministic) rate of energy input and prescribed (random) jumps downwards in energy due to flares. The existing model reproduces observed flare statistics, in particular flare frequency – size and waiting-time distributions, but modeling presented to date has considered only the time-independent choices of constant energy input and constant flare-transition rates with a power-law distribution in energy. These choices may be appropriate for a solar active region producing a constant mean rate of flares. However, many solar active regions exhibit time variation in their flare productivity, as exemplified by NOAA active region (AR) 11029, observed during October – November 2009 (Wheatland in Astrophys. J. 710, 1324, 2010). Time variation is incorporated into the jump-transition model for two cases: (1) a step change in the rates of flare transitions, and (2) a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The model exhibits flare-like event statistics. In each case the frequency – energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. The rollover is not observed if the mean free energy of the system is sufficiently large. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case 1 are presented which confirm the estimate for the relaxation time and the expected forms of the frequency – energy and waiting-time distributions. The simulation results provide a qualitative model for observed flare statistics in AR 11029.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号