首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82703篇
  免费   1460篇
  国内免费   1046篇
测绘学   2196篇
大气科学   6200篇
地球物理   15995篇
地质学   29101篇
海洋学   7767篇
天文学   19081篇
综合类   297篇
自然地理   4572篇
  2022年   445篇
  2021年   782篇
  2020年   880篇
  2019年   937篇
  2018年   2053篇
  2017年   1953篇
  2016年   2594篇
  2015年   1479篇
  2014年   2385篇
  2013年   4418篇
  2012年   2665篇
  2011年   3492篇
  2010年   3005篇
  2009年   3955篇
  2008年   3462篇
  2007年   3489篇
  2006年   3230篇
  2005年   2607篇
  2004年   2508篇
  2003年   2414篇
  2002年   2308篇
  2001年   2031篇
  2000年   1941篇
  1999年   1702篇
  1998年   1657篇
  1997年   1600篇
  1996年   1399篇
  1995年   1298篇
  1994年   1135篇
  1993年   1042篇
  1992年   1019篇
  1991年   992篇
  1990年   1003篇
  1989年   849篇
  1988年   849篇
  1987年   908篇
  1986年   847篇
  1985年   1050篇
  1984年   1177篇
  1983年   1054篇
  1982年   1008篇
  1981年   906篇
  1980年   845篇
  1979年   821篇
  1978年   811篇
  1977年   690篇
  1976年   633篇
  1975年   645篇
  1974年   600篇
  1973年   641篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
By using theD-criterion Lindblad (1992) has identified 14 asteroid families from a sample of 4100 numbered asteroids with proper elements from Milani and Kneevi (1990). Taxonomic types and other physical properties for a significant number of objects in five of the families show strong homogeneity within each family, further strengthening their internal relationship.To test the hypothesis of a common origin in, e.g., a catastrophic collision event, we have set out to integrate the orbits of the members of the Maria, Dora and Oppavia-Gefion families over some 106 years. The mean distance for the Maria family is close to the 3:1 mean-motion resonance with Jupiter, while the other two families lie close to the 5:2 resonance.We used a simplified solar system model which included the perturbations by Jupiter and Saturn only and implemented Everhart's variable stepsize integrator RA15. All close encounters between the family members (within 0.1 AU) were recorded as well. Preliminary results from integrations over 4×105 years are presented here.The statistics of close encounters show pronounced peaks for several members within each family, while for others no significant levels above the background of random encounters or even very low frequencies were found. This indicates a subclustering within the families. Quite a lot of very close (<0.005 AU) mutual encounters are found, which suggest that, at least for the larger members in a family, the mutual gravitational interactions could be of some importance for the real orbital evolutions.The encounter statistics between the Dora and Oppavia family members suggest a possible interrelationship between this two groups.  相似文献   
992.
The Lyapunov characteristic numbers (LCNs) which are defined as the mean value of the distribution of the local variations of the tangent vectors to the flow (=ln k i ) (see Froeschlé, 1984) have been found to be sensitive indicators of stochasticity. So we computed the distribution of these local variations and determined the moments of higher order for the integrable and stochastic regions in a binary star system with =0.5.  相似文献   
993.
H2 is the most abundant molecule in the universe. We demonstrate that this molecule may be an important component of interstellar and possibly intergalactic ices, both because it can be formed in situ, within the ices, and because gas phase H2 can freeze out onto dust grains in some astrophysical environments. The condensation-sublimation and infrared spectral properties of ices containing H2 are presented. We show that solid H2 in H20-rich ices can be detected by an infrared absorption band at 4137 cm-1 (2.417 micrometers). The surface binding energy of H2 to H2O ice was measured to the delta Hs/k = 555 +/- 35 K. Surface binding energies can be used to calculate the residence times of H2 on grain surfaces as a function of temperature. Some of the implications of these results are considered.  相似文献   
994.
We present high resolution millimeter, near-infrared, and optical data on the Wolf-Rayet nucleus of the Liner NGC 6764. The millimeter12CO(1-0) maps were obtained using the Nobeyama Millimeter Interferometer. Near-infrared images in the K-band continuum and the 2.12µm H2, 2.06µm He I, 2.17µm Br, and 1.64µm [Fe II] lines were taken with the MPE imaging spectrometer FAST at the William Herschel Telescope on La Palma, Spain. The optical data were obtained at the 3.5m telescope on Calar Alto, Spain. The measurements indicate a strong concentration of molecular gas and a massive starburst at the nucleus of NGC 6764. The interferometric position velocity map of the nucleus shows the presence of distinct molecular cloud complexes with an apparently asymmetric velocity field shifted towards the blue with respect to the systemic velocity of 2420 km s–1. The distribution of the 2.12µm H2 line flux exhibits extensions approximately perpendicular to the bar which are in agreement with structural features in VLA radio maps and IRAM 30m maps of the12CO(2–1) line emission. This may represent evidence for combination of a nuclear outflow and a central oval distortion of gas predicted by gas dynamical calculations as a response to a bar like potential. A detailed investigation of the Wolf-Rayet-feature at 466 nm indicates that it is spatially extended on a scale of a few arcseconds.  相似文献   
995.
Within the bounds of the general relativity and in gravidynamics, spherically-symmetric configurations are considered with the limit equation of state (P = ( - 4B)/3) and with the density increasing to the center. It is shown that unlike GR, where the existence of strange stars only is permissible (u-, d-, s-quarks), in the consistent dynamic theory of gravitation the existence ofstable configuration withr –2 (quark star) is possible with a bag out of quark-gluon plasma which includes all possible quark flavors (u, d, s, c, b, t, .. .). The total mass of such a compact object with the bag of the radius of 10 km (whose surface consists of the strange self-bound matter) must be 6 - 7M .  相似文献   
996.
The so-called inverse planetary problem can be stated as follows: given the distances from the centre, masses, and radii of (say) three planets of a planetary system, find the optimum polytropic index, mass, and radius of their star, and also other quantities of interest, which depend either explicitly or implicitly on the foregoing ones (e.g., central and mean density, central and mean pressure, central and mean temperature, etc.). It is hereafter tacitly assumed that the system is opaque with respect to observations concerning periods of planetary otbits; hence, we cannot have any relevant estimates due to the well-known period laws. In the present paper, the inverse planetary problem is treated numerically on the basis of the so-called global polytropic model, developed recently by the first author.  相似文献   
997.
We have modeled stellar coronal loops in static conditions for a wide range of loop length, plasma pressure at the base of the loop and stellar surface gravity, so as to describe physical conditions that can occur in coronae of stars ranging from low mass dwarfs to giants as well as on a significant fraction of the Main-Sequence stars.Three alternative formulations of heat conduction have been used in the energy balance equation, depending on the ratio 0/L Tbetween electron mean free path and temperature scale height: Spitzer's formulation for 0/L Tless than 2 × 10–3, the Luciani, Mora, and Virmont non-local formulation for 0/L Tbetween 2 × 10–3 and 6.67 × 10–3 and the limited free-streaming formulation for 0/L Tlarger than 6.67 × 10–3.We report the characteristics of all loop models studied, and present examples to illustrate how the temperature and density stratification can be drastically altered by the different conductivity regimes. Significant differences are evident in the differential emission measure distribution vs temperature, an important observable quantity. We also show how physical conditions of coronal plasma, and in particular thermal conduction, change with stellar surface gravity.We have found that, for fixed loop length and stellar gravity, a minimum of loop-top plasma temperature occurs, corresponding to the highest value of base plasma pressure for which the limited free-streaming conduction occurs. This value of temperature satisfies the appropriate scalingT 10–9 L g, in cgs units.  相似文献   
998.
McKay CP  Pollack JB  Lunine JI  Courtin R 《Icarus》1993,102(1):88-98
We have developed a coupled atmosphere and ocean model of Titan's surface. The atmospheric model is a 1-D spectrally-resolved radiative-convective model. The ocean thermodynamics are based upon solution theory. The ocean, initially composed of CH4, becomes progressively enriched in ethane over time. The partial pressures of N2 and CH4 in the atmosphere are dependent on the ocean temperature and composition. We find that the resulting system is stable against a runaway greenhouse. Accounting for the decreased solar luminosity, we find that Titan's surface temperature was about 20 K colder 4 Gyr ago. Without an ocean, but only small CH4 lakes, the temperature change is 12 K. In both cases we find that the surface of Titan may have been ice covered about 3 Gyr ago. In the lakes case condensation of N2 provides the ice, whereas in the ocean case the ocean freezes. The dominant factor influencing the evolution of Titan's surface temperature is the change in the solar constant--amplified, if an ocean is present, by the temperature dependence of the solubility of N2. Accretional heating can dramatically alter the surface temperature; a surface thermal flux of 500 erg cm-2 sec-1, representative of small levels of accretional heating, results in a approximately 20 K change in surface temperatures.  相似文献   
999.
A search and estimation of the statistical significance of the quasi-periodical structures (QPS) has been carried out: for the luminosity function of the galaxies in a few rich clusters; for the integrated mass function of galaxies in the superclusters identified via = 21 cm observations. Some statistically significant QPS have been revealed. The periods for these structures are in agreement between each other, at this basis the hypothesis has been proposed that an effect of the QPS at the level of galaxies has some universal character. Frequency doubling has been discovered for these QPS.  相似文献   
1000.
Earlier models of compressible, rotating, and homogeneous ellipsoids with gas pressure are generalized to include the presence of radiation pressure. Under the assumptions of a linear velocity field of the fluid and a bounded ellipsoidal surface, the dynamical behaviour of these models can be described by ordinary differential equations. These equations are used to study the finite oscillations of massive radiative models with masses 10M and 30M in which the effects of radiation pressure are expected to be important.Models with two different degrees of equilibrium are chosen: an equilibrium (i.e., dynamically stable) model with an initial asymmetric inward velocity, and a nonequilibrium model with a nonequilibrium central temperature and which falls inwards from rest. For each of these two degrees of equilibrium, two initial configurations are considered: rotating spheroidal and nonrotating spherical models.From the numerical integration of the differential equations for these models, we obtain the time evolution of their principal semi-diametersa 1 anda 3, and of their central temperatures, which are graphically displayed by making plots of the trajectories in the (a 1,a 3) phase space, and of botha 1 and the total central pressureP c against time.It is found that in all the equilibrium radiative models (in which radiation pressure is taken into account), the periods of the oscillations of botha 1 andP c are longer than those of the corresponding nonradiative models, while the reverse is true for the nonequilibrium radiative models. The envelopes of thea 1 oscillations of the equilibrium radiative models also have much longer periods; this result also holds for the nonequilibrium models whenever the envelope is well defined. Further, as compared to the nonradiative models, almost all the radiative models collapse to smaller volumes before rebouncing, with the more massive model undergoing a larger collapse and attaining a correspondingly larger peakP c.When the mass is increased, the dynamical behavior of the radiative model generally becomes more nonperiodic. The ratio of the central radiation pressure to the central gas pressure, which is small for low mass models, increases with mass, and at the center of the more massive model, the radiation pressure can be comparable in magnitude to the gas pressure. In all the radiative models, the average periods as well as the average amplitudes of both thea 1 andP c oscillations also increase with mass.When either rotation or radiation pressure effects or both are included in the equilibrium nonradiative model, the period of the envelope of thea 1 oscillations is increased. The presence of rotation in the equilibrium radiative model, however, decreases this period.Some astrophysical implications of this work are briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号