首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53527篇
  免费   857篇
  国内免费   563篇
测绘学   1448篇
大气科学   3801篇
地球物理   9909篇
地质学   19223篇
海洋学   4906篇
天文学   12912篇
综合类   192篇
自然地理   2556篇
  2022年   365篇
  2021年   629篇
  2020年   658篇
  2019年   707篇
  2018年   1583篇
  2017年   1505篇
  2016年   1893篇
  2015年   989篇
  2014年   1747篇
  2013年   2866篇
  2012年   1854篇
  2011年   2376篇
  2010年   2068篇
  2009年   2680篇
  2008年   2299篇
  2007年   2348篇
  2006年   2193篇
  2005年   1621篇
  2004年   1639篇
  2003年   1548篇
  2002年   1473篇
  2001年   1301篇
  2000年   1218篇
  1999年   996篇
  1998年   1042篇
  1997年   950篇
  1996年   817篇
  1995年   785篇
  1994年   685篇
  1993年   604篇
  1992年   593篇
  1991年   594篇
  1990年   622篇
  1989年   494篇
  1988年   505篇
  1987年   529篇
  1986年   487篇
  1985年   612篇
  1984年   673篇
  1983年   591篇
  1982年   562篇
  1981年   499篇
  1980年   469篇
  1979年   478篇
  1978年   459篇
  1977年   370篇
  1976年   349篇
  1975年   360篇
  1974年   309篇
  1973年   343篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
A simple self-consistent model of a high-temperature turbulent current sheet (HTCS) is considered. The anomalous character of plasma conductivity in a sheet is assumed to be due to gradient instabilities. The possibility of a low threshold of their excitation is demonstrated by an example of temperature-drift instability.Application of the HTCS model to the hot or main phase of a solar flare is discussed. The model consistently explains many observed properties of this phase.  相似文献   
242.
A large sample of Be stars has been studied spectrophotometrically in the visible region. The continuum energy distribution data for 23 Be stars included in the list of Harmanecet al. (1983) are presented and discussed in the wavelength range 3200 Å–8000 Å. For 15 Be stars the observations reported in the present work are new. By comparing the observed continua with models, the effective temperatures of these stars have been estimated. It is found that, in general, Be stars have lower effective temperature than the corresponding normal B stars. The present study shows that the early-Be stars (B0–B5) possess near-ultraviolet and near-infrared excess emissions more frequently than the late-Be stars (B5–B9). The seven new Be stars are detected to show pole-on characteristics.  相似文献   
243.
Corotating solar wind streams emanating from stable coronal structures provide an unique opportunity to compare the response of planetary ionospheres to the energy conveyed in the streams. For recurrent solar conditions the signal propagating outward along spiral paths in interplanetary space can at times exhibit rather similar content at quite different downstream locations in the ecliptic plane. Using solar wind measurements from plasma detectors on ISEE-3, Pioneer Venus Orbiter (PVO) and Helios-A, as well as in-situ ion composition measurements from Bennett Ion Mass Spectrometers on the Atmosphere Explorer-E and PVO spacecraft, corotating stream interactions are examined at Earth and Venus. During May–July 1979 a sequence of distinct, recurrent coronal regions developed at the Sun. Analysis of these regions and the associated solar wind characteristics indicates a corrresponding sequence of corotating streams, identifiable over wide distances. The time series of solar wind velocity variations observed at Earth, Venus, and the Helios-A positions during June–July attests to intervals of corotating stream propagation. The characteristics of the stream which passed Earth on July 3, are observed at Helios-A and at Venus (PVO) about 8 days later, consistent with the spiral path propagation delay times between the locations in the ecliptic plane. On July 3, Earth and Venus have a wide azimuthal separation of about 142 . Although the planetary environments are distinctly different, pronounced and somewhat analagous ionospheric responses to the stream passage are observed at both Earth and Venus. The response to the intercepted stream is consistent with independent investigations which have shown that the variability of the solar wind momentum flux is an important factor in the solar wind-ionosphere interaction at both planets.  相似文献   
244.
The continuum energy distribution of the emission line star X Per (O9.5III-V) has been obtained in the wavelength range 340–710 nm and has been compared with the energy distribution of Cam in the same wavelength range. The continuum of the star is found to be modified by the circumstellar envelope. A number density of the order of 1011 in the envelope has been obtained from the observations of H in emission.  相似文献   
245.
Exact solutions have been obtained for a massive fluid sphere under the extreme causality condition (dP/dρ)=1. Radial pulsational stability of these structures has been discussed. It is found that for pulsationally stable configurations the surface to central density ratio is greater than 0.30, the maximum values for surface and central redshifts are 0.85 and 3.40 respectively in the extreme case, and the maximum mass and size are respectively 4.8M and 20.1 km. It has also been shown that these structures are gravitationally bound, with a maximum binding energy per unit rest mass equal to 0.25 for a surface to central density ratio ?0.40. Slow rotation of these configurations has also been considered, and the relative drag and moment of inertia have been calculated. These results have been applied to the Crab pulsar and the mass of the pulsar has also been calculated based upon this model.  相似文献   
246.
We establish limits on the total radiant energy of solar flares during the period 1980 February – November, using the solar-constant monitor (ACRIM) on board the Solar Maximum Mission. Typical limits amount to 6 × 1029 erg/s for a 32-second integration time, with 5σ statistical significance, for an impulsive emission; for a gradual component, about 4 × 1032 ergs total radiant energy. The limits lie about an order of magnitude higher than the total radiant energy estimated from the various known emission components, suggesting that no heretofore unknown dominant component of flare radiation exists.  相似文献   
247.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   
248.
The data such as the H-spectrum-spectroheliographic (SSHG) observations, the H-chromospheric observations, etc., of a flare loop prominence which occurred on the western solar limb on 1981 April 27 have been obtained at Yunnan Observatory. The distribution of the internal motions and the macroscopical motion of the flare loop prominence with time and space in the course of its eruption and ascension is derived from the comprehensive analysis of the data. The possible physical pictures and the instability of the motions of the loop are inferred and discussed.  相似文献   
249.
Nagai  F.  Wu  S. T.  Tandberg-Hanssen  E. 《Solar physics》1983,84(1-2):271-283
We have investigated numerically how a temperature difference between electrons and protons is produced in a flaring loop by adopting a one-fluid, two-temperature model instead of a single-temperature model. We have treated a case in which flare energy is released in the form of heating of electrons located in the top part of the loop.In this case, a large temperature difference (T e/T p 10) appears in the corona in the energy-input phase of the flare. When the material evaporated from the chromosphere fills the corona, the temperature difference in the loop begins to shrink rapidly from below. Eventually, in the loop apex, the proton temperature exceeds the electron temperature mainly due to cooling of the electrons by conduction down the loop and heating of the protons by compression of the ascending material. In the late phase of the flare (t 15 min from the flare onset), the temperature difference becomes less than 2% of the mean temperature of electrons and protons at every point in the loop.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号