首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   18篇
  国内免费   5篇
测绘学   2篇
大气科学   12篇
地球物理   67篇
地质学   78篇
海洋学   35篇
天文学   64篇
自然地理   4篇
  2024年   2篇
  2023年   1篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   13篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   10篇
  2011年   14篇
  2010年   13篇
  2009年   14篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   14篇
  2003年   12篇
  2002年   6篇
  2001年   13篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
51.
New geochemical, isotopic, and geochronological data and interpretations are presented for late Neoproterozoic intrusive carbonates and related rocks of southern Sinai, Egypt (northernmost Arabian–Nubian Shield). The Tarr carbonates are coarsely crystalline and related to explosive emplacement of hypabyssal and volcanic albitite at 605 ± 13 Ma. The carbonates associated with the albitites are divisible into two types: primary dolomitite and secondary breunneritite (Fe-rich magnesite). The dolomitite was clearly intrusive but differs from classic igneous carbonatites, containing much lower abundances of incompatible elements, such as REE, U, Th, Rb, Nb, Y, P, Sr, Zr, Ba, and total alkalies. The breunneritite is a secondary replacement of dolomitite, probably marking the roots of a vigorous hydrothermal system. Albitites show pristine abundances of major and trace elements and were not subjected to a major metamorphic overprint. They are relatively more fractionated, alkaline and related to within-plate A-type magmas, were emplaced in an extensional or non-compressive tectonic regime in the cupola of high-level A-type granite. Tarr albitites may represent residual magma remaining after near-total crystallization of an A-type granite pluton at depth, forcibly emplaced into the roof above the cooling pluton. The intrusive dolomitite exsolved from highly differentiated albitite melt, in the apical regions of a still-buried alkaline “A-type” granite pluton that was rich in CO2; these volatiles migrated upwards and towards the cooler margins of the magma body. Late NNE-SSW extension allowed a shallow-level cupola to form, into which albitite melts and carbonate fluids migrated, culminating in explosive emplacement of albitite breccia and intrusive carbonate. Isotopic compositions of Tarr dolomitite and albitite indicate these are consanguineous and ultimately of mantle origin. Magmatic volatiles fenitized the wall rock, while submarine hydrothermal activity transformed some of the dolomitite into breunneritite. Recognition of Tarr-type should encourage similar hypabyssal complex intrusions to be sought for in association with A-type granitic plutons elsewhere.  相似文献   
52.
53.
Abstract Nekoma volcano forms part of the arc axis volcanic array of the North-eastern Honshu arc, Japan, which is commonly characterized by medium-K lava suites. However, Nekoma is exceptional because many of its lavas are low-K. This anomaly has been a matter of debate. Nekoma was active from 1.1 to 0.35 Ma. The volcano consists of thick andesite flows and domes associated with block and ash flow deposits produced during lava dome formation. A horseshoe-shaped collapse caldera was formed at the summit and small lava domes extruded into the caldera. Stratigraphy, published K–Ar ages, and tephrochronology define three stages of volcanic activity, about 1.1 Ma (Stage 1), 0.8–0.6 Ma (Stage 2) and 0.45–0.35 Ma (Stage 3; post caldera stage). Low-K andesites occur in all stages. Extremely low-K andesite was also associated in Stage 2 and medium-K andesite was dominant in Stage 3. In general, lavas changed from low-K to medium-K after caldera formation. Geochemical study of the Nekoma lavas shows that both low-K and medium-K lavas are isotopically similar and were derived from a common source. Adatara and Azuma volcanoes, which lie close to Nekoma, also have both low-K and medium-K andesites. However, Sr isotope ratios or temporal-spatial variations in K-level lava classification vary between the three centers. Comparisons of K suites and Sr isotope ratios with frontal arc volcanoes in North-east–Honshu suggest source heterogeneity existed in both medium- and low-K suites. The K contents of lavas and their Sr isotopes are not simply related. This requires re-examination of models for chemical variation of andesites in arcs.  相似文献   
54.
55.
56.
To determine depth dependence of permeability in various geologic deposits, exponential models have often been proposed. However, spatial variability in hydraulic conductivity, K, rarely fits this trend in coarse alluvial aquifers, where complex stratigraphic sequences follow unique trends due to depositional and post-depositional processes. This paper analyzes K of alluvial-fan gravel deposits in several boreholes, and finds exponential decay in K with depth. Relatively undisturbed gravel cores obtained in the Toyohira River alluvial fan, Sapporo, Japan, are categorized by four levels of fine-sediment packing between gravel grains. Grain size is also analyzed in cores from two boreholes in the mid-fan and one in the fan-toe. Profiles of estimated conductivity, $ \overline{K} $ , are constructed from profiles of core properties through a well-defined relation between slug-test results and core properties. Errors in $ \overline{K} $ are eliminated by a moving-average method, and regression analysis provides the decay exponents of $ \overline{K} $ with depth. Moving-average results show a similar decreasing trend in only the mid-fan above ~30-m depth, and the decay exponent is estimated as ≈0.11 m?1, which is 10- to 1,000-fold that in consolidated rocks. A longitudinal cross section is also generated by using the profiles to establish hydrogeologic boundaries in the fan.  相似文献   
57.
Abstract– Enstatite chondrites (ECs) were subjected to noble gas analyses using stepped crushing and pyrolysis extraction methods. ECs can be classified into subsolar gas‐carrying and subsolar gas‐free ECs based on the 36Ar/84Kr/132Xe ratios. For subsolar gas‐free ECs, elemental ratios, and Xe isotopic compositions indicate that Q gas is the dominant trapped component, the Q gas concentration can be correlated with the petrologic type, reasonably explained by gas release from a common EC parental material during subsequent heating. Atmospheric Xe with sub‐Q elemental ratios is found in Antarctic E3s at 600–800 °C and through crushing. The 132Xe released in these fractions accounts for 30–60% of the bulk concentrations. Hence, the sub‐Q signature is generally due to contamination of elementally fractionated atmosphere. Subsolar gas is mainly released (up to 78% of the bulk 36Ar) at 1300–1600 °C and through crushing, suggesting that enstatite and friable phases are the host phases. Subsolar gas is isotopically identical to solar gas, but elementally fractionated. These observations are consistent with a previous study, which suggested that subsolar gas could be fractionated solar wind having been implanted into chondrule precursors ( Okazaki et al. 2001 ). Unlike subsolar gas‐free ECs, the primordial gas concentrations of subsolar gas‐carrying ECs are not simply correlated with the petrologic type. It is inferred that subsolar gas‐rich chondrules were heterogeneously distributed in the solar nebula and accreted to form subsolar gas‐carrying ECs. Subsequent metamorphic and impact‐shock heating events have affected noble gas compositions to various degrees.  相似文献   
58.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   
59.
NWA 8785 is a remarkable EL3 chondrite with a high abundance (~34 vol%) of an Fe-rich matrix. This is the highest matrix abundance known among enstatite chondrites (ECs) and more similar to the matrix abundances in some carbonaceous and Rumuruti chondrites. X-ray diffraction and TEM data indicate that the fine-grained portion of the NWA 8785 matrix consists of nanoscale magnetite mixed with a noncrystalline silicate material and submicron-sized enstatite and plagioclase grains. This is the first report of magnetite nanoparticles in an EL3. The Si content of the metal (0.7 wt%), presence of ferroan alabandite, and its O isotopic composition indicate NWA 8785 is EL3-related. Having more abundant matrix than in other ECs, and that the matrix is rich in magnetite nanoparticles, which are not present in any other EC, suggest classification as an EL3 anomalous. Although we cannot completely exclude any of the mechanisms or environments for formation of the magnetite, we find a secondary origin to be the most compelling. We suggest that the magnetite formed due to hydrothermal activity in the meteorite parent body. Although ECs are relatively dry and likely formed within the nebular snow line, ices may have drifted inward from just beyond the snow line to the region where the EL chondrites were accreting, or more likely the snow line migrated inward during the early evolution of the solar system. This may have resulted in the condensation of ices and provided an ice-rich region for accretion of the EL3 parent body. Thus, the EL3 parent body may have had hydrothermal activity and if Earth formed near the EC accretion zone, similar bodies may have contributed to the Earth's water supply. NWA 8785 greatly extends the range of known characteristics of ECs and EC parent body processes.  相似文献   
60.
Agricultural risk management policies under climate uncertainty   总被引:1,自引:0,他引:1  
Climate change is forecasted to increase the variability of weather conditions and the frequency of extreme events. Due to potential adverse impacts on crop yields it will have implications for demand of agricultural risk management instruments and farmers’ adaptation strategies. Evidence on climate change impacts on crop yield variability and estimates of production risk from farm surveys in Australia, Canada and Spain, are used to analyse the policy choice between three different types of insurance (individual, area-yield and weather index) and ex post payments. The results are found to be subject to strong uncertainties and depend on the risk profile of different farmers and locations; the paper provides several insights on how to analyse these complexities. In general, area yield performs best more often across our countries and scenarios, in particular for the baseline and marginal climate change (without increases in extreme events). However, area yield can be very expensive if farmers have limited information on how climate change affects yields (misalignment in expectations), and particularly so under extreme climate change scenarios. In these more challenging cases, ex post payments perform well to increase low incomes when the risk is systemic like in Australia; Weather index performs well to reduce the welfare costs of risks when the correlation between yields and index is increased by the extreme events. The paper also analyses the robustness of different instruments in the face of limited knowledge of the probabilities of different climate change scenarios; highlighting that this added layer of uncertainty could be overcome to provide sound policy advice under uncertainties introduced by climate change. The role of providing information to farmers on impacts of climate change emerges as a crucial result of this paper as indicated by the significantly higher budgetary expenditures occurring across all instruments when farmers’ expectations are misaligned relative to actual impacts of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号