首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   18篇
  国内免费   5篇
测绘学   2篇
大气科学   12篇
地球物理   67篇
地质学   78篇
海洋学   35篇
天文学   64篇
自然地理   4篇
  2024年   2篇
  2023年   1篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   13篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   10篇
  2011年   14篇
  2010年   13篇
  2009年   14篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   14篇
  2003年   12篇
  2002年   6篇
  2001年   13篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有262条查询结果,搜索用时 62 毫秒
121.
Abstract— Using the Terrain Camera onboard the Japanese lunar explorer, SELENE (Kaguya), we obtained new high‐resolution images of the 22‐kilometer‐diameter lunar crater Giordano Bruno. Based on crater size‐frequency measurements of small craters (<200 m in diameter) superposed on its continuous ejecta, the formation age of Giordano Bruno is estimated to be 1 to 10 Ma. This is constructive evidence against the crater's medieval age formation hypothesis.  相似文献   
122.
The temperature and pressure differences between Tokyo and Nagasaki were used to reconstruct past climate conditions. January and July in each available year since the 1820s were classified into several types with characteristic sea level atmospheric pressure patterns. This results in 18 years of pre-1881 data and a continuous series thereafter. The series indicate that the warming after 1900 (after the end of the so-called Little Ice Age) and again after 1960 can at least partly be attributed to an increase in the frequency of warm circulation pattern types at the expense of cold types. The difference in nature of the shifts in circulation types that occurred in the late nineteenth century compared with that in the late twentieth centuries suggests that the mechanism behind the warming in the late nineteenth century differs from that in the late twentieth century.  相似文献   
123.
A basanite–nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279–307, 2006; Dixon et al. in J Pet 38:911–939, 1997), the early Kilauea basanite–nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet–phlogopite–sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids’ distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350–1,400°C (olivine–liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ~3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate–silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite–nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol 142:520–542, 2002). It may represent the melting products of a fertile domain in the ambient upper mantle impinged upon and perturbed by the sustained plume source that feeds later shield-stage magmatism.  相似文献   
124.
125.
126.
In situ stress measurements in a borehole close to the Nojima Fault   总被引:1,自引:0,他引:1  
Abstract In situ stress was measured close to the fault associated with the 1995 Kobe Earthquake (Hyogo-ken Nanbu earthquake; January 1995; M 7.2) using the hydraulic fracturing method. The measurements were made approximately 2 years after the earthquake. The measured points were approximately 40 m from the fault plane at depths of about 1500 m. The maximum and the minimum horizontal compressive stresses were 45 MPa and 31 MPa, respectively. The maximum compressive stress and the maximum shear stress are very small in comparison with those of other seismically active areas. The azimuth of the maximum horizontal compressive stress was estimated from the observed azimuths of well bore breakouts at depths between 1400 m and 1600 m and was found to be N135° (clockwise). The maximum stress axis is perpendicular to the fault strike, N45°. These features are interpreted in terms of a small frictional coefficient of the fault. The shear stress on the fault was released and dropped almost to zero during the earthquake and it has not yet recovered. Zero shear stress on the fault plane resulted from the perpendicular orientation of one of the principal stress to the fault plane.  相似文献   
127.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
128.
129.
Abstract A deep section of accretionary complex, the metamorphosed Susunai Complex, is observed on Sakhalin Is., Russia. High pressure part of pumpellyite-actinolite facies metavolcanics, metacherts and metapelites are well exposed and constitute a tectonic pile preserving primary structures related to underplating of the oceanic crust. Three stages of deformation, D1 through D3, suggest successive deformation during subduction, underplating and exhumation of the complex. Oceanic material in the complex is more abundant than other well documented ancient accretionary complexes (e.g. the Shimanto Belt in southwest Japan and the Ghost Rocks Formation in Alaska), which were shallowly underplated. At Susunai, deep down-stepping of a décollément has scraped off the upper part of the oceanic crust, primarily the pillowed basalt horizon. This down-stepping results from crustal weakening as overpressured water is released from the fractured oceanic crust during metamorphism.  相似文献   
130.
Jun-Ichi  Kimura  Mamiko  Tateno  Isaku  Osaka 《Island Arc》2005,14(2):115-136
Abstract   The geology and geochemistry of pyroclastic flows and fallout tephras formed during the Karasugasen dome eruption in the Daisen–Hiruzen Volcano Group in southwest Japan have been examined in detail. The Karasugasen lava dome erupted at about 26 ka. The eruption began with a vulcanian ash fall, and this was followed by at least eight block and ash flows and a pumice flow. The block and ash flows were produced by the successive collapses of a growing lava dome. This main eruption phase was followed by an eruption of vulcanian ash falls, and finally ended with a sub-Plinian pumice fall. This eruption sequence is typical of the Daisen Volcano during the last three eruption events, which occurred at 58, 26 and 17 ka. The magma produced during the Karasugasen eruption was a typical adakite, with extremely high Sr/Y ratios and low HREE/LREE ratios compared to normal arc lavas. The chemistry of the Karasugasen lavas is almost identical to other Daisen–Hiruzen lavas that were produced from eruptions over an interval of a million years. The continuous supply of a huge amount of adakitic magma (>100 km3) for such a long period suggests a massive homogeneous source material, such as molten Philippine Sea Plate slab. Slab melting is a plausible mechanism for the production of the adakitic lavas at Karasugasen, and hence the Daisen–Hiruzen Volcano Group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号