首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
大气科学   3篇
地球物理   11篇
地质学   18篇
海洋学   30篇
天文学   9篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1979年   1篇
  1973年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
21.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   
22.
We examine the basic characteristics of inflations at Semeru Volcano, Indonesia, to clarify the pressurization process prior to two different styles of explosive eruptions: Vulcanian eruptions and gas bursts. Analysis of data obtained from tilt meters installed close to the active crater allows clarification of the common features and the differences between the two styles of eruptions. To improve the signal-to-noise ratio and to determine the mean characteristics of the inflations, we stack tilt signals obtained from eruptions of different magnitudes and evaluate the maximum amplitude of the seismic signal associated with these eruptions. Vulcanian eruptions, which explosively release large amounts of ash, are preceded by accelerating inflation about 200–300 s before the eruption, which suggests volume expansion of the gas phase. In contrast, gas bursts, which rapidly effuse water steam accompanied by explosive sounds, follow non-accelerating changes of inflation starting 20 s before each emission. Tilt amplitudes increase with the magnitude of eruptions for both eruption styles. This suggests that the volume and/or pressure of magma or gas stored in the conduit before eruptions controls the magnitude of volcanic eruptions. These results further suggest that the magnitude of eruptions can be predicted from geodetic measurements of volcano inflation.  相似文献   
23.
The spring diatom bloom characterizes the plankton and nutrient dynamics in the Oyashio region, the westernmost part of the subarctic Pacific. Previous studies have shown that NO3 was not depleted during the spring bloom, and an increase in the consumption ratio of Si(OH)4 to NO3 (ΔSi(OH)4:ΔNO3) was observed as the spring bloom progressed. The increase in ΔSi(OH)4:ΔNO3 has been suggested to be caused by growth stresses of diatoms, e.g. light limitation by self-shading. In the present study, incubation experiments of sea-surface water from the Oyashio region under saturated irradiance showed that NO3 was depleted first and ΔSi(OH)4:ΔNO3 was more or less constant until the NO3 depletion occurred. The increase in ΔSi(OH)4:ΔNO3 was observed after the NO3 depletion had occurred in contrast with the field observation. This result of the increase in ΔSi(OH)4:ΔNO3 under saturated irradiance after NO3 depletion suggests that the in situ increase in ΔSi(OH)4:ΔNO3 before the NO3 depletion might be caused by light limitation for diatoms. Responses to a reduction in irradiance were examined using diatom species isolated from the Oyashio region. Variable responses to a reduced irradiance were observed for cell specific C, N, Si and chlorophyll a (Chl) contents. However, the examined diatom species showed similar tendencies for increases in Si:C and Si:N and decreases in C:Chl ratios with the reduction in irradiance. We conclude that light limitation changes the uptake ratio of nutrients and the elemental composition of diatoms and that light limitation is one of the factors influencing the physiology of diatoms and nutrient dynamics in the Oyashio region during the spring bloom.  相似文献   
24.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   
25.
Abstract. The Rodnikovoe gold deposit situated in a presently active hydrothermal system located north of the Mutnovsko-Asachinskaya geothermal area in southern Kamchatka, Far Eastern Russia, consists of typical low-sulfidation quartz-adularia veins in a host rock of diorite. The age of the mineralization was dated by the K-Ar method as 0.9 to 1.1 Ma based on adular-ia collected from the veins. Representative ore minerals in the deposit are electrum, argentite, aguilarite, polybasite, pearceite and lenaite. Dominant alteration minerals are adularia, α-cristobalite, chlorite, illite and kaolinite. Hydrothermal solutions of neutral pH were responsible for the mineralization, which is divided into six stages defined by tectonic boundaries. Gold mineralization occurred in stages I and III. Hydrothermal brecciation occurred during stages III, IV and VI. Stages II, IV, V and VI were barren. The estimated ore formation temperature based on a fluid inclusion study is 150 to 250 °C at a depth of approximately 170 m below the paleo-water table. Boiling of hydrothermal fluids is hypothesized as the cause of the intermittent deposition of gold ore. The sulfur and oxygen fugacities during the deposition of anhydrite prior to the hydrothermal brecciation were higher than those during the gold mineralization stages. The occurrence in the hydrothermal breccia of fragments of high grade Au-Ag and polymetallic ores suggests that higher grade mineralization of these metal ores might have occurred in a deeper portion of the deposit.  相似文献   
26.
Abstract. The Mutnovskoe deposit located in the Porozhisto‐Asachinskaya metallogenic province of South Kamchatka, Russia, is a polymetallic vein and Au‐Ag quartz vein associated type of hydrothermal deposit. The Mutnovskoe deposit is located inside a paleo‐caldera structure at the center of the Mutnovsko‐Asachinskaya geothermal field of Pliocene ‐ Quaternary age, where active gold deposition is identified in hot spring precipitate. The Mutnovskoe deposit is subdivided into the north flank, the central flank and the south flank based on the vein distributions and mineral parageneses. The mineralized vein system is oriented N‐S hosted in diorite ‐ gabbroic diorite stock, volcanic rocks and sedimentary rocks of Miocene ‐ Pleistocene age. The mineralization stage I (polymetallic vein) mainly in the central and the south flanks is Zn‐Pb‐Cu‐Au‐Ag contained in sphalerite, galena and tetrahedrite‐tennantite group mineral. The stage II (Au‐Ag quartz vein) occurs in the north and the central flanks. The stage III (Mn‐sulfide and Mn‐Ca‐carbonate vein) occurs in the whole deposit area. Stage II is the typical Au‐Ag quartz‐adularia vein of low‐sulfidation type. Stage III is alabandite‐rhodochrosite‐quartz‐calcite vein. The K‐Ar ages are 1.3±0.1 Ma for stage I sericite in alteration zone, and 0.7±0.1 Ma for the stage II adularia in mineralized vein. Based on the fluid inclusion study, range of ore forming temperature of the Mutnovskoe deposit is 200 to 260d?C (av. 230d?C). Salinities of fluid inclusions indicate 2.2 to 5.7 wt% NaCl in sphalerite and 0.8 to 3.3 wt% NaCl in quartz for the stage I. Mineral paragenesis of the polymetallic vein (stage I) is characterized by a district zoning of tennantite and Cd‐rich sphalerite in the south flank and tetrahedrite and Mn‐rich sphalerite in the central flank, which is due to the fractional crystallizations of ore‐forming fluid. Depositional condition of the low sulfidation state is inferred for the Mutnovskoe deposit, where the polymetallic vein of the south flank is in relatively higher sulfidation state than the central flank.  相似文献   
27.
Size distributions of Neocalanus cristatus, N. flemingeri and N. plumchrus were investigated in the eastern and the western subarctic gyres and three marginal seas of the North Pacific during the diapause period to examine the geographical variation in body size of Neocalanus species and to clarify the origin of the large biennial N. flemingeri which has been observed in the Oyashio region. There were significant among region variations in body sizes for all three species of Neocalanus. Generally, the body sizes of the copepods were larger in the marginal seas and marginal areas of the open ocean. In the open ocean, the body sizes increased westward. These patterns of variation in the body sizes roughly correlated with local food availability. Distribution of biennial N. flemingeri was restricted to the Sea of Japan, the Okhotsk Sea and the Oyashio region. The large-sized biennial N. flemingeri were abundantly observed in the Okhotsk Sea, and the medium-sized biennial individuals were observed in the Sea of Japan. These facts strongly suggest that the large biennial N. flemingeri in the Oyashio region are advected from the Okhotsk Sea.  相似文献   
28.
To test the iron hypothesis in the subarctic Pacific Ocean, an in situ iron-enrichment experiment (SEEDS) was performed in the western subarctic gyre in July–August 2001. About 350 kg of iron (as acidic iron sulfate) and 0.48 mol of the inert chemical tracer sulfur hexafluoride were introduced into a 10-m deep surface mixed layer over an 80 km2 area. This single iron infusion raised dissolved iron levels to 2.9 nM initially. Dissolved iron concentrations rapidly decreased after the infusion, but levels remained close to 0.15 nM even at the end of the 14-day experimental period. During SEEDS there were iron-mediated increases in chlorophyll a concentrations (up to 20 μg l−1), primary production rates, biomass and photosynthetic energy conversion efficiency relative to waters outside the iron-enriched patch. The rapid and very high accumulation of phytoplankton biomass in response to the iron addition appeared to be partly attributable to shallow mixed-layer depth and moderate water temperature in the western subarctic Pacific. However, the main reason was a floristic shift to fast-growing centric diatom Chaetoceros debilis, unlike the previous iron-enrichment experiments in the equatorial Pacific and the Southern Ocean, in both of which iron stimulated the growth of pennate diatoms. The iron-mediated blooming of diatoms resulted in a marked consumption of macronutrients and drawdown of pCO2. Biological and physiological measurements indicate that phytoplankton growth in the patch became both light- and iron-limited, making phytoplankton biomass relatively constant after day 9. The increase in microzooplankton grazing rate after day 9 also influenced the net growth rate of phytoplankton. There was no significant increase in the export flux of carbon to depth during the 14-day occupation of the experimental site. The export flux between day 4 and day 13 was estimated to be only 13% of the integrated primary production in the iron-enriched patch. The major part of the carbon fixed by the diatom bloom remained in the surface mixed layer as biogenic particulate matter. Our findings support the hypothesis that iron limits phytoplankton growth and biomass in a ‘bottom up’ manner in this area, but the fate of algal carbon remains unknown.  相似文献   
29.
Horizontal distribution of the copepodNeocalanus cristatus was shown to be fractal on the scale between tens of meters and over 100 km. The fractal dimensions ranged between 1.68–1.89, significantly higher than those of oceanic turbulence and phytoplankton distribution.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号