首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
地质学   14篇
海洋学   6篇
天文学   25篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  1992年   1篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
21.
An algorithm of the ensemble pulsar time based on the optimal Wiener filtration method has been constructed. This algorithm allows the separation of the contributions to the post-fit pulsar timing residuals of the atomic clock and the pulsar itself. Filters were designed using the cross- and auto-covariance functions of the timing residuals. The method has been applied to the timing data of millisecond pulsars PSR B1855+09 and B1937+21 and allowed the filtering out of the atomic-scale component from the pulsar data. Direct comparison of the terrestrial time TT(BIPM06) and the ensemble pulsar time PTens revealed that the fractional instability of TT(BIPM06)−PTens is equal to  σ z = (0.8 ± 1.9) × 10−15  . Based on the  σ z   statistics of TT(BIPM06)−PTens, a new limit of the energy density of the gravitational wave background was calculated to be equal to  Ωg h 2∼ 3 × 10−9  .  相似文献   
22.
An analytical solution to shallow-water nonlinear equations determining the height of tsunami waves leaving the source is obtained. The initial water-level displacement in the source and the distribution of particle velocities are set. The numerical solution showed that analytical estimates fit well with source characteristics varying in a broad range, even if the waves produced by the source collapse.  相似文献   
23.
24.
Fedorova  V. A.  Rodin  A. E. 《Astronomy Reports》2019,63(1):39-48
Astronomy Reports - Results of a search for individual impulsive signals on the Large Scanning Antenna of the Lebedev Physical Institute at 111 MHz carried out from July 2012 through May 2018 are...  相似文献   
25.
Timing of the anomalous pulsar PSR B0943+10 during 2007–2013 was carried out on the Large Phased Array radio telescope of the Pushchino Radio Astronomy Observatory at 112 MHz. The astrometric and rotational parameters for epoch MJD=56 500 have been determined. Considerable deviations of the pulse times of arrival from the precalculated values with a characteristic period of several years due to the presence of correlated low-frequency noise in the pulsar spin phase have been detected. These deviations can be explained in a planetary model by the presence of two companions of the pulsar, whose orbital parameters have been determined. A continuous increase in the longitude of the pulse maximum within the emission window, the pulse width, and the intensity have been detected after each switch to the burst mode. Together with the changes in pulse shape, degree of linear polarization of the pulse, and drift rate of individual pulses detected earlier, this indicates that all the main parameters of the radio emission in the B mode are unstable. This distinguishes PSR B0943+10 from all other modes-witching pulsars. The origin of the observed properties of this pulsar are probably associated with the interaction of its extended magnetosphere with the surrounding medium.  相似文献   
26.
An overview of results obtained in the field of planetary atmosphere studies in Russia in 2007?C2010 prepared by the Commission on Planetary Atmospheres of the National Geophysical Committee for the National Report on Meteorology and Atmospheric Sciences to the XXV General Assembly of the International Union of Geodesy and Geophysics (Melbourne, 28 June?C7 July 2011) [1, 2] is presented.  相似文献   
27.
The results of an analysis of timing data for the pulsar PSR B0329+54 obtained in 1968–2012 on the Large Scanning Antenna of the Pushchino Radio Astronomy Observatory at 111 MHz, the 64 m DSS-14 telescope of the Jet Propulsion Laboratory at 2.3 GHz, and the 64 m telescope of the Kalyazin Radio Astronomy Observatory at 610 MHz are presented. The astrometric and spin parameters of the pulsar are derived at a new epoch. The coordinates of the pulsar and its proper motion measured at the three frequencies differ. These differences have a systematic character, and are interpreted as a secular, refractive shift in the apparent position of the pulsar that arises because it is observed through large-scale inhomogeneities of the interstellar medium, leading to variations in the angle of refraction.  相似文献   
28.
Moroz  V. I.  Rodin  A. V. 《Solar System Research》2002,36(6):492-494
The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by anomalous turbulent heat conductivity. It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.  相似文献   
29.
Rodin  A. E.  Fedorova  V. A. 《Astronomy Letters》2022,48(6):321-328
Astronomy Letters - Based on a pairwise comparison of the behavior of individual pulsar time scales, we have developed a method to calculate the rating of pulsars that are used to construct an...  相似文献   
30.
The absorption spectrum and thermal radiation fluxes are calculated for the lower atmosphere of Venus in the far-wing approximation based on the theory of the collisional broadening of spectral lines. The results are in good agreement with the available experimental data. An outgoing thermal radiation flux is about 2.6 W/m2 near the planetary surface. This indicates that free convection significantly contributes to the thermal balance of the lower troposphere. The fluxes obtained in this study were compared to those calculated on the basis of empirical models of the spectral line profile. It was shown that the far wings of the CO2 lines considerably affect the radiative transfer in the transparency windows. This effect becomes weaker when the contribution of the absorption of minor constituents, primarily water vapor, increases. The profiles of absorption lines of minor constituents do not influence the thermal radiation fluxes.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 214–226.Original Russian Text Copyright © 2005 by Afanasenko, Rodin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号