首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30507篇
  免费   508篇
  国内免费   318篇
测绘学   735篇
大气科学   2392篇
地球物理   6593篇
地质学   10574篇
海洋学   2543篇
天文学   6191篇
综合类   51篇
自然地理   2254篇
  2020年   194篇
  2019年   191篇
  2018年   385篇
  2017年   373篇
  2016年   528篇
  2015年   392篇
  2014年   536篇
  2013年   1461篇
  2012年   660篇
  2011年   1006篇
  2010年   849篇
  2009年   1115篇
  2008年   1051篇
  2007年   978篇
  2006年   1025篇
  2005年   874篇
  2004年   912篇
  2003年   853篇
  2002年   852篇
  2001年   690篇
  2000年   693篇
  1999年   665篇
  1998年   630篇
  1997年   637篇
  1996年   539篇
  1995年   532篇
  1994年   506篇
  1993年   474篇
  1992年   453篇
  1991年   388篇
  1990年   467篇
  1989年   375篇
  1988年   411篇
  1987年   464篇
  1986年   390篇
  1985年   563篇
  1984年   644篇
  1983年   625篇
  1982年   508篇
  1981年   503篇
  1980年   510篇
  1979年   467篇
  1978年   455篇
  1977年   426篇
  1976年   443篇
  1975年   395篇
  1974年   429篇
  1973年   421篇
  1972年   262篇
  1971年   207篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   
902.
903.
Facies analyses of Pleistocene deposits from southern coastal Tanzania (Lindi District) document that sediments formed in a wetland evolving on a coastal terrace in the Lindi Fracture Zone foreland. The exposed succession shows a marked sedimentary change from tidal to terrestrial facies. 14C analyses on gastropod shells indicate the emergence of the Lindi coast at ∼ 44 14C ka BP. Emergence and subsequent elevation of terraces to 21 m above present-day sea level was linked to the falling eustatic sea level prior to the last glacial maximum, and to a periodic elevation due to extensional tectonic episodes in the eastern branch of the East African Rift System (EARS). Since ∼ 44 14C ka BP tectonic uplift at the coast was 80-110 m, comparable to that in the extreme uplift areas of the EARS.  相似文献   
904.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   
905.
Oxygen depletion in the shallow bottom waters of Mobile Bay, Alabama, and in adjacent nearshore and continental shelf waters, is shown to be directly related to the intensity of water column stratification. Low winds speeds are coincidental with the onset of water column stratification and the occurrence of hypoxic events. Hourly, daily, and seasonal changes in the relationship between percent oxygen saturation or oxygen concentration in the bottom waters and surface-bottom density differences indicate that the oxidized materials are recently formed, and not relic or overwintering carbon sources. The influence of density structure (water column stratification) in other oxygen-depleted coastal water masses is compared to Mobile Bay.  相似文献   
906.
The carbonato and hydrogencarbonato complexes of Mg2+ were investigated at 25 and 50° in solutions of the constant ClO4? molality (3 M) consisting preponderantly of NaClO4. The experimental data could be explained assuming the following equilibria: Mg2+ + CO2B + H2O ag MgHCO+3 + H+, log 1β1 = ?7.644 ± 0.017 (25°), ?7.462 ± 0.01 1 (50°), Mg2+ + 2 CO2g + 2 H2Oag Mg(HCO3)02 ± 2 H+, log 1β2 = ?15.00 ± 0.14 (25°), ?15.37 ± 0.39 (50°), Mg2+ + CO2g + H2Oag MgCO03 + 2 H+, log 1k1 = ?15.64 ± 0.06 (25°),?15.23 ± 0.02 (50°), with the assumption γMgCO30 = γMg(HCO3)02, ΔG0(I = 0) for the reaction MgCO03 + CO2g + H2O = Mg(HCO3)02 was estimated to be ?3.91 ± 0.86 and 0.6 ± 2.4 kJ/mol at 25 and 50°C, respectively. The abundance of carbonate linked Mg(II) species in fresh water systems is discussed.  相似文献   
907.
The Y-5 ash is the most widespread layer in deep-sea sediments from the eastern Mediterranean. This ash layer was previously correlated with the Citara-Serrara tuff on Ischia Island and dated at approximately 25,000 yr B.P. New data on the glass chemistry of the Y-5 ash and pyroclastic deposits from the Neopolitan volcanic province suggest that the layer is correlative with the large-volume Campanian ignimbrite and not with the deposit from Ischia Island. The volume of the Y-5 ash is approximately 65 km3 which is comparable in magnitude to the volume of the Campanian ignimbrite. An interpolated age of approximately 38,000 yr B.P. is estimated based on sedimentation rates derived from δ18O stratigraphy. There is a discrepancy between this estimate and previously reported radiocarbon ages which range from 24,000 to 35,000 yr B.P. We propose that the “Campanian tuff ash layer” should be adopted as the full stratigraphic name for the Y-5 ash. The deep-sea ash layer is divisible into two units in proximal localities, probably correlating with two major phases of the eruption: plinian and ignimbrite.  相似文献   
908.
Solubility product determinations suggest that the hydrous phosphates of the rare earths, REPO4 · xH2O, are important in controlling the sea water REE concentrations. Two of these solids, rhabdophane, (P6222) and “hydrous xenotime”, (141/amd), have been synthesized at 100°C via the acid hydrolysis of the respective REE pyrophosphate. The solubility products at infinite dilution were determined to be pK0 = 24.5, (La at 25°C); 26.0, (Pr at 100°C); 25.7, (Nd at 100°C): and 25.5, (Er at 100°C). On the basis of calculations involving the reaction of RE3+ with apatite to form the hydrous phosphate, the lanthanum concentration in sea water is predicted to be about 140 pmol/L. Laboratory experiments support the hypothesis that apatite is a substrate for reactions with dissolved REE.  相似文献   
909.
910.
Citation Abrahart, R.J. & Mount, N.J. (2011) Discussion of “Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers by S.A. Mirgagheri et al. (2010, Hydrol. Sci. J. 55(7), 1175–1189).” Hydrol. Sci. J. 56(7), 1325–1329.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号