首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
大气科学   1篇
地球物理   13篇
地质学   9篇
海洋学   5篇
天文学   4篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
  1982年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0–200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg−1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.  相似文献   
12.
Ritsuo Nomura 《Island Arc》2021,30(1):e12421
The lower part of the Josoji Formation, Shimane Peninsula, contains clues for figuring out changes in deep-water characteristics during the opening of the Japan Sea. The foraminiferal assemblage includes early to middle Miocene biostratigraphic index taxa such as planktonic foraminiferal Globorotalia zealandica and Globorotaloides suteri. The occurrence of these two species, together with the absence of praeorbulinids, suggests that the lower part of the Josoji Formation is assigned to the top of planktonic foraminiferal Zone N7/M4 (16.39 Ma). The benthic foraminiferal assemblage, which is characterized by Cyclammina cancellata and Martinottiella communis, clearly suggests that the lower Josoji Formation was deposited at bathyal depths, and that it developed in association with the abrupt appearance of deep-sea calcareous forms. Such bathyal taxa are the main constituents of the Spirosigmoilinella compressa–Globobulimina auriculata Zone of the Josoji Formation and also of the Gyrodina–Gyroidinoides Zone at Ocean Drilling Program Site 797 in the Japan Sea. The base of these benthic foraminiferal zones can be correlated with the base of the nannofossil Sphenolithus heteromorphus Base Zone (= CNM6/CN3); thus, its estimated age is 17.65 Ma. This biostratigraphic information suggests that the lower Josoji Formation was deposited from shortly before 17.65–16.39 Ma in upper limit age. Evidence that fresh to brackish and shallow-water basins formed in the rifting interval of 20–18 Ma in the Japan Sea borderland suggests that the abrupt appearance of deep-sea calcareous foraminifera occurred about 1 my earlier in this area than in other sedimentary basins and suggests that a significant paleoceanographic change occurred in the proto-Japan Sea at 17.65 Ma.  相似文献   
13.
The air–sea ice CO2 flux was measured over landfast sea ice in the Chukchi Sea, off Barrow, Alaska in late May 2008 with a chamber technique. The ice cover transitioned from a cold early spring to a warm late spring state, with an increase in air temperature and incipient surface melt. During melt, brine salinity and brine dissolved inorganic carbon concentration (DIC) decreased from 67.3 to 18.7 and 3977.6 to 1163.5 μmol kg−1, respectively. In contrast, the salinity and DIC of under-ice water at depths of 3 and 5 m below the ice surface remained almost constant with average values of 32.4±0.3 (standard deviation) and 2163.1±16.8 μmol kg−1, respectively. The air–sea ice CO2 flux decreased from +0.7 to −1.0 mmol m−2 day−1 (where a positive value indicates CO2 being released to the atmosphere from the ice surface). During this early to late spring transition, brought on by surface melt, sea ice shifted from a source to a sink for atmospheric CO2, with a rapid decrease of brine DIC likely associated with a decrease in the partial pressure of CO2 of brine from a supersaturated to an undersaturated state compared to the atmosphere. Formation of superimposed ice coincident with melt was not sufficient to shut down ice–air gas exchange.  相似文献   
14.
Ocean Drilling Program Leg 199 Site 1220 provides a continuous sedimentary section across the Paleocene/Eocene (P/E) transition in the carbonate‐bearing sediments on 56–57 Ma oceanic crust. The large negative δ13C shift in seawater is likely due to the disintegration of methane hydrate, which is expected to be rapidly changed to carbon dioxide in the atmosphere and well‐oxygenated seawater, leading to a reduction in deep‐sea pH. A pH decrease was very likely responsible for the emergence of agglutinated foraminiferal fauna as calcareous fauna was eliminated by acidification at the P/E transition at Site 1220. The absence of the more resistant calcareous benthic foraminifera and the presence of the planktonic foraminifera at Site 1220 is interesting and unique, which indicates that calcareous benthic foraminifera suffered greatly from living on the seafloor. Box model calculation demonstrates that, assuming the same mean alkalinity as today, pCO2 must increase from 280 ppm to about 410 ppm for the calcite undersaturation in the deep ocean and for the oversaturation in the surface ocean during the P/E transition. The calculated increased pCO2 coincides with paleo‐botanical evidence. The current global emission rate (~7.3 peta (1015) gC/y) of anthropogenic carbon input is approximately 30 times of the estimate at the P/E transition. The results at the P/E transition give an implication that the deep sea benthic fauna will be threatened in future in combination with ocean acidification, increased sea surface temperature and more stratified surface water.  相似文献   
15.
Twin formation in hematite during dehydration was investigated using X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy (TEM). When synthetic goethite was heated at different temperatures between 100 and 800 °C, a phase transformation occurred at temperatures above 250 °C. The electron diffraction patterns showed that the single-crystalline goethite with a growth direction of [001]G was transformed into hematite with a growth direction of [100]H. Two non-equivalent structures emerged in hematite after dehydration, with twin boundaries at the interface between the two variants. As the temperature was increased, crystal growth occurred. At 800 °C, the majority of the twin boundaries disappeared; however, some hematite particles remained in the twinned variant. The electron diffraction patterns and high-resolution TEM observations indicated that the twin boundaries consisted of crystallographically equivalent prismatic (100) (010), and (1\(\bar{1}\)0) planes. According to the total energy calculations based on spin-polarized density functional theory, the twin boundary of prismatic (100) screw had small interfacial energy (0.24 J/m2). Owing to this low interfacial energy, the prismatic (100) screw interface remained after higher-temperature treatment at 800 °C.  相似文献   
16.
We have developed a two-dimensional model of a flared protoplanetary disk (PPD) incorporating a self-consistent treatment of gas and dust temperature, and a detailed treatment of the gas-phase chemistry as well as the freeze-out and desorption of material from dust grains. The results show that, in the inner 10 AU of the disk, the gas-phase abundances are dominated by material evaporated from dust grains. The surface layer of the disk shows many of the characteristics of photon-dominated regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
17.
Lake Nakaumi, southwest Japan, is an enclosed lagoon characterized by polyhaline and halocline conditions. Since the last century, its ecological state has been altered by eutrophication. We used a paleolimnological approach and studied multiple proxies, including chemical compounds, diatoms, foraminifera and molluscs, to infer the eutrophication history of the ecosystem. Eutrophication in Lake Nakaumi was associated with several factors, including increased nutrient loading, input of herbicides, and dike building since the 1920s. The ecological condition of this lake was divided into several stages that reflect the eutrophication process after the 1940s. A catastrophic “regime shift” from a clear state with aquatic vegetation to a turbid one with phytoplankton occurred in the early 1950s. Environmental degradation in the Honjo area, a part of Lake Nakaumi, was attributed primarily to physical changes caused by the construction of an enclosing dike. Eutrophication occurred almost simultaneously with the physical changes to the Honjo area in the 1970s. Until recently, no regime shift was observed in this area, though the core-top sediments show possible symptoms of incipient change.  相似文献   
18.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   
19.
Nineteen trace elements were determined in liver, muscle, kidney, gonads, and hair of 18 harp seals (Phoca groenlandica) from Pangnirtung in the Baffin Island, Canada. Concentrations of V, Mn, Fe, Cu, Mo, Ag, and Hg in the liver, Co, Cd, and Tl in the kidney, and Ba and Pb in the hair were significantly higher than those in other tissues. Significant positive correlations between Hg concentrations in the hair, and liver, kidney and testis imply usefulness of the hair sample for non-destructive monitoring of Hg in the harp seals. It is suggested that whereas Hg preferentially accumulates in the liver, the accumulation in other tissues is induced at higher hepatic Hg levels. In contrast, Se may not be accumulated in other tissues compared with the liver even at higher hepatic Hg levels because of the presence of excess Se for Hg detoxification in other tissues.  相似文献   
20.
A turbidity current is a turbulent, particle-laden gravity current that is driven by density differences resulting from the presence of suspended sediment particles. The current travels downslope, bearing a large amount of sediment over a great distance, and forms fluvial and submarine bedforms. Knowledge of the spatio-temporal deposition profile of turbidity-deposited sediment is important for a better understanding of sediment transport by turbidity currents. In the current study, the depositi...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号