首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   27篇
  国内免费   12篇
测绘学   7篇
大气科学   52篇
地球物理   130篇
地质学   171篇
海洋学   80篇
天文学   31篇
综合类   4篇
自然地理   27篇
  2024年   3篇
  2023年   7篇
  2022年   7篇
  2021年   16篇
  2020年   22篇
  2019年   9篇
  2018年   30篇
  2017年   16篇
  2016年   14篇
  2015年   23篇
  2014年   13篇
  2013年   25篇
  2012年   25篇
  2011年   39篇
  2010年   22篇
  2009年   27篇
  2008年   28篇
  2007年   26篇
  2006年   15篇
  2005年   21篇
  2004年   15篇
  2003年   15篇
  2002年   12篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有502条查询结果,搜索用时 615 毫秒
291.
This study examines the role of rainfall variability on the spatial scaling structure of peak flows using the Whitewater River basin in Kansas as an illustration. Specifically, we investigate the effect of rainfall on the scatter, the scale break and the power law (peak flows vs. upstream areas) regression exponent. We illustrate why considering individual hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of rainfall variability. We begin with the simple scenario of a basin receiving spatially uniform rainfall of varying intensities and durations and subsequently investigate the role of storm advection velocity, storm variability characterized by variance, spatial correlation and intermittency. Finally, we use a realistic space–time rainfall field obtained from a popular rainfall model that combines the aforementioned features. For each of these scenarios, we employ a recent formulation of flow velocity for a network of channels, assume idealized conditions of runoff generation and flow dynamics and calculate peak flow scaling exponents, which are then compared to the scaling exponent of the width function maxima. Our results show that the peak flow scaling exponent is always larger than the width function scaling exponent. The simulation scenarios are used to identify the smaller scale basins, whose response is dominated by the rainfall variability and the larger scale basins, which are driven by rainfall volume, river network aggregation and flow dynamics. The rainfall variability has a greater impact on peak flows at smaller scales. The effect of rainfall variability is reduced for larger scale basins as the river network aggregates and smoothes out the storm variability. The results obtained from simple scenarios are used to make rigorous interpretations of the peak flow scaling structure that is obtained from rainfall generated with the space–time rainfall model and realistic rainfall fields derived from NEXRAD radar data.  相似文献   
292.
293.
Hydrogen peroxide can form through the interaction of pyrite and anoxic water. The oxidation of pyrite results in the precipitation of sulfates and iron oxides, high redox potentials (~ 1000 mV) and acidic pH (3–4). The oxidative potential of the resultant solution may be responsible for the oxidation of organic compounds, as observed in the subsurface of the Rio Tinto Mars analog. On Mars subsurface migration of groundwater interacting with volcanogenic massive pyrite deposits would have mobilized acidic and oxidizing fluids through large portions of the crust, resulting in the widespread deposition of sulfates and iron oxides. This groundwater could have leached substantial volumes of aquifer material and crustal rocks, thereby erasing any organic compounds possibly down to depths of hundreds of meters. Therefore, the preservation of organic biosignatures must have been severely constrained in the portions of the ancient Martian crust that were exposed to aqueous processes, calling for a redefinition of the future targets in the search for biomolecular traces of life on Mars.  相似文献   
294.

The study of water masses is important as they transport water properties affecting the biosphere and ocean dynamics. In this study, we revisit water masses in the Caribbean Sea using climatology and 11 months of observations at different depths from 3 moorings placed in the Guajira upwelling region, providing some new findings. The Caribbean Surface Water (CSW) seasonal variability is studied at the mixed layer depth. Salinity differences between CSW and the saltier North Atlantic Subtropical Underwater (SUW) determine static stability spatial and temporal variations, with implications for regional ocean dynamics. Besides, we assess the climatologic distribution of water masses below the salinity maximum using the optimum multiparameter analysis and the Thermodynamic Equation of Seawater 2010, defining their source water indices when entering the Caribbean Sea. The SUW, with its core at ~ 150 m depth, occupies 16% of the Caribbean Sea volume, complemented by 38% of Antarctic Intermediate Water, with its core at ~ 700 m depth and North Atlantic Deep Water, which as bottom water occupies 46% of the volume. Hydrographic observations do not differ from climatology, regardless of their large sub-annual variations decreasing with depth. Daily time series of dominant water fractions at different depths correlate at each mooring, indicating a common forcing. Besides, rotated wind stress, which is an indicator of the Guajira upwelling, correlates regularly with water mass fractions down to 700 m depth. However, during strong wind shifts, upwelling seems to affect them down to 1450 m depth.

  相似文献   
295.
296.
Physical modelling of cracked/fractured media using downscaled laboratory experiments has been used with great success as a useful alternative for understanding the effect of anisotropy in the hydrocarbon reservoir characterization and in the crustal and mantle seismology. The main goal of this work was to experimentally verify the predictions of effective elastic parameters in anisotropic cracked media by Hudson and Eshelby–Cheng's effective medium models. For this purpose, we carried out ultrasonic measurements on synthetic anisotropic samples with low crack densities and different aspect ratios. Twelve samples were prepared with two different crack densities, 5% and 8%. Three samples for each crack density presented cracks with only one crack aspect ratio, whereas other three samples for each crack density presented cracks with three different aspect ratios in their composition. It results in samples with aspect ratio values varying from 0.13 to 0.26. All the cracked samples were simulated by penny‐shaped rubber inclusions in a homogeneous isotropic matrix made with epoxy resin. Moreover, an isotropic sample for reference was constructed with epoxy resin only. Regarding velocity predictions performed by the theoretical models, Eshelby–Cheng shows a better fit when compared with the experimental results for samples with single and mix crack aspect ratio (for both crack densities). From velocity values, our comparisons were also performed in terms of the ε, γ, and δ parameters (Thomsen parameters). The results show that Eshelby–Cheng effective medium model fits better with the measurements of ε and γ parameters for crack samples with only one type of crack aspect ratio.  相似文献   
297.
Managed aquifer recharge is used to augment groundwater resources and provide resiliency to water supplies threatened by prolonged droughts. It is important that recharge facilities operate at their maximum efficiency to increase the volume of water stored for future use. In this study, we evaluate the use of distributed temperature sensing (DTS) technology as a tool to measure high-resolution infiltration rates at a large-scale recharge facility. Fiber optic cable was laid out inside a spreading basin in a spiral pattern, at two different depths. The cables measured the propagation of diurnal surface water temperature oscillations into the basin depth. The rate of heat propagation is proportional to the velocity of the water, making it possible to estimate the infiltration rate from the temperature measurements. Our results showed that the infiltration rate calculated from DTS, averaged over the entire basin, was within 5% of the infiltration rate calculated using a conventional metering method. The high-resolution data obtained from DTS, both spatially and temporally, revealed heterogeneous infiltration rates throughout the basin; furthermore, tracking the evolution of infiltration rates over time revealed regions with consistently high infiltration rates, regions with consistently low infiltration rates, and regions that evolved from high to low rates, which suggested clogging within that region. Water utilities can take advantage of the high-resolution information obtained from DTS to better manage recharge basins and make decisions about cleaning schedule, frequency, and extent, leading to improved basin management strategies, reduced O&M costs, and increased groundwater recharge.  相似文献   
298.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   
299.
300.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号