首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
大气科学   2篇
地球物理   14篇
地质学   12篇
海洋学   4篇
天文学   3篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1985年   2篇
  1980年   1篇
  1958年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
21.
An experimental campaign is reported on the slow-drift motion of a rectangular barge moored at different positions along an inclined beach, at waterdepths ranging from 54 cm to 21 cm, and submitted to irregular beam seas. The beach is achieved by inclining the 24 m long false bottom of the tank at a slope of 5%, from a depth of 1.05 m. The slow-drift component of the measured sway motion is first compared with state-of-the-art calculations based on Newman’s approximation. At 54 cm depth a good agreement is obtained between calculations and measurements. At 21 cm depth the Newman calculations exceed the measured values. When the flat bottom setdown contribution is added up, the calculated values become 2 to 3 times larger than the measured ones. A second-order model is proposed to predict the shoaling of a bichromatic sea-state propagating in varying water-depth. This model is validated through comparisons with an extension of Schäffer’s model for a straight beach [Schäffer HA. Infragravity waves induced by short-wave groups. J Fluid Mech 1993;247:551-88] and with a fully nonlinear Boussinesq model. It appears that the long wave amplitude is much less than predicted by the flat bottom model, and that its phase difference with the short wave envelope also deviates from the flat bottom model prediction. As a result of this phase shift the actual second-order wave loads can be lower than predicted by Newman’s approximation alone. Application of the shoaling model to the barge tests yields a notably better agreement between numerical and experimental values of its slow-drift sway motion.  相似文献   
22.
We have reconfigured the Texas digital ocean bottom seismograph (OBS) to operate in a triggered mode and record regional earthquake signals. This paper reports the results of a deployment program designed to test these digital OBS, by moni toring earthquake activity in and near the trench in southern Vanuatu (formerly, the New Hebrides). We successfully recorded hundreds of earthquakes, including 133 located regional earth quakes recorded by three or more stations. We also report J-B residuals for 21 earthquakes reported and located by the ISC. Fourier analysis of seismograms from regional earthquakes suggest that the frequencies of spectral peaks at any station were nearly the same for large, small, nearby, and distant events. However, we obtained very disparate frequencies when we analyzed seismograms for the same earthquake recorded at different stations. The most plausible interpretation is that spectral peaks do not depend on the characteristics of the earthquake source, but instead on site characteristics, or, more specifically, on the coupling of the instrument to the seafloor. To record reliable spectral data, we need to overcome this problem.  相似文献   
23.
In situ surveys (1997–2002) of Karenia brevis distribution on the west Florida shelf were used to explain spectral remote sensing reflectance, chlorophyll-a concentration, and backscattering coefficient estimates derived using SeaWiFS satellite data. Two existing approaches were tested in an attempt to differentiate K. brevis blooms from other blooms or plumes. A chlorophyll-anomaly method used operationally by the National Oceanic and Atmospheric Administration (NOAA) sometimes correctly identified K. brevis blooms but also generated false positives and false negatives. The method identified approximately 1000 km2 of high chlorophyll-anomalies (>1 mg m−3) off southwest Florida between the 10 and 50-m isobaths nearly every day from summer to late fall. Whether these patches were K. brevis blooms or not is unknown. A second method used a backscattering:chlorophyll-a ratio to identify K. brevis patches. This method separated K. brevis from other blooms using in situ optical data, but it yielded less satisfactory results with SeaWiFS data. Spectral reflectance (Rrs) estimates for K. brevis blooms, diatom blooms, and coastal river plumes are statistically similar for many cases. Large pixel size, shallow water, and imperfect algorithms distort satellite retrievals of bio-optical parameters in patchy blooms. At present, a combination of chlorophyll-a, chlorophyll-anomaly, backscattering:chlorophyll-a ratio, RGB composites, MODIS fluorescence data, as well as time-series analysis and ancillary data such as winds, currents, and sea surface temperature can improve K. brevis bloom assessments. Progress in atmospheric correction and bio-optical inversion algorithms is required to help improve capabilities to monitor K. brevis blooms from space. Further, satellite sensors with improved radiometric capabilities and temporal/spatial resolutions are also required.  相似文献   
24.
Extreme high-magnitude and low-frequency storm events in arid zones provide the necessary runoff to entrain sediments from source areas and therefore dictate the linkages between hillslopes and channels. Nevertheless, the erosive impact of large storms remains difficult to predict. Most of the uncertainty lies in the lack of topographic change maps associated with single hydro-meteorological events. Consequently, event-based erosion models are poorly constrained and their extrapolation over long time periods remains uncertain. In this study, a 15-month Sentinel-1A coherence time series, optical and field data are used to map the spatial patterns of erosion after the 5-day storm occurred on March 2015, in the Atacama Desert. The coherence change detection (CCD) analysis suggests that temporal loss of coherence is related to variations in soil moisture, while permanent loss of coherence is related to modification of soil texture by erosion and sedimentation. Importantly, permanent loss of coherence is more apparent on gentle rather than steeper slopes, likely reflecting differences in regolith cover and thickness. These findings can contradict the landscape models predicting higher erosion on steeper hillslopes. The CCD technique represents a promising tool for analysing and modelling sediment connectivity in arid areas, giving a clear picture of the relation between sediment sources and sink pathways. © 2020 John Wiley & Sons, Ltd.  相似文献   
25.
The present study research investigation is aimed to assess the groundwater quality for the urban area in Khan Younis City, southern Gaza Strip, for multi-domestic purposes. The physicochemical analysis of the groundwater wells shows the major ions in the order of Na+ > Mg2+ > Ca2+ > B3+ > K+ and Cl? > HCO3 ? > SO4 2? > NO3 2? > F? > PO4 3?. Groundwater quality is classified as very hard-brackish water type. Ninety-five percent of the wells are classified as saline water type with high NO3 2? concentrations. Based on water quality index (WQI), the groundwater falls into one of three categories: fair water (10%), poor water (15%), very poor (45%), and worst (30%). The high WQI values are because of high Na+, Cl?, SO4 2?, and NO3 2? concentrations, while synthetic pollution index (SPI) values indicate that most about 80% of the wells are seriously polluted. Langelier Saturation Index (LSI) indicates that most of data are either slightly scale forming or corrosive water or slightly corrosive but non-scale forming, and 75% of the wells are suitable for construction purposes (have SO4 2? concentrations <300 mg/L). The groundwater reaches alarming situation, where almost chemically unsuitable for drinking purposes and the water to be used after proper treatment such as desalination.  相似文献   
26.
Computed tomography scan imaging techniques have been used on core samples to investigate the effect of natural open fractures on reservoir flow in the Snøhvit Gas Condensate Field. Firstly, computed tomography (CT) scanning was used to describe the 3D geometrical properties of the fracture network including orientation and fracture density. Two types of fractures were observed: F1 fractures are short and stylolite related and F2 fractures are longer, cross-cutting the core and without any obvious relationship to stylolites. Secondly, monitoring of single and two phase flow experiments on samples containing these two types of natural open fractures was performed under 10 and 80 bar net confining pressure while using CT scanning. 1-phase miscible flooding experiment shows approximately 3 times higher flooding velocity in an open F2 fracture than in the matrix. 2-phase flooding by gas injection into a 100% water saturated core gave early gas breakthrough due to flow in the fracture and thereafter very little water production. The flow experiments showed that the presence of open fractures has a significant local effect on fluid flow even in a case with relatively high matrix porosity (200–300 mD). The sample containing F1 fractures showed a complex flow pattern influenced both by open fractures and stylolites. The CT scan data enables an exact representation of the fracture network in core scale simulation models and therefore improves the understanding of fracture influence on flow in a fractured porous medium. CT scanning of core samples provides an effective tool for integrating geology and fluid flow properties of a porous fractured medium.  相似文献   
27.
A sodar was deployed at Roissy–Charles de Gaulle airport near Paris, France, in 2008 with the aim of improving the forecast of low visibility conditions there. During the winter of 2008–2009, an experiment was conducted that showed that the sodar can effectively detect and locate the top of fog layers which is signaled by a strong peak of acoustic reflectivity. The peak is generated by turbulence activity in the inversion layer that contrasts sharply with the low reflectivity recorded in the fog layer below. A specific version of the 1D-forecast model deployed at Roissy for low visibility conditions (COBEL-ISBA) was developed in which fogs’ thicknesses are initialized by the sodar measurements rather than the information derived from the down-welling IR fluxes observed on the site. It was tested on data archived during the winters of 2008–2009 and 2009–2010 and compared to the version of the model presently operational. The results show a significant improvement—dissipation times of fogs are better predicted.  相似文献   
28.
We present the results of an 18-month study to characterize the optical turbulence in the boundary layer and in the free atmosphere above the summit of Mauna Kea in Hawaii. This survey combined the Slope-Detection and Ranging (SLODAR) and Low-Layer SCIntillation Detection And Ranging (SCIDAR) (LOLAS) instruments into a single manually operated instrument capable of measuring the integrated seeing and the optical turbulence profile within the first kilometre with spatial and temporal resolutions of 40–80 m and 1 min (SLODAR) or 10–20 m and 5 min (LOLAS). The campaign began in the fall of 2006 and observed for roughly 50–60 h per month. The optical turbulence within the boundary layer is found to be confined within an extremely thin layer (≤80 m), and the optical turbulence arising within the region from 80 to 650 m is normally very weak. Exponential fits to the SLODAR profiles give an upper limit on the exponential scaleheight of between 25 and 40 m. The thickness of this layer shows a dependence on the turbulence strength near the ground, and under median conditions the scaleheight is <28 m. The LOLAS profiles show a multiplicity of layers very close to the ground but all within the first 40 m. The free-atmosphere seeing measured by the SLODAR is 0.42 arcsec (median) at 0.5 μm and is, importantly, significantly better than the typical delivered image quality at the larger telescopes on the mountain. This suggests that the current suite of telescopes on Mauna Kea is largely dominated by a very local seeing either from internal seeing, seeing induced by the flow in/around the enclosures, or from an atmospheric layer very close to the ground. The results from our campaign suggest that ground-layer adaptive optics can be very effective in correcting this turbulence and, in principle, can provide very large corrected fields of view on Mauna Kea.  相似文献   
29.
30.
In this paper, the authors analyse the stability of particular numerical schemes used in oceanic general circulation models to deal with the barotropic momentum advection term. It is shown that, when this term is integrated using time splitting, its stability properties can be drastically reduced in configurations where there exists shallow areas, where velocities become comparable to the propagation speed of external gravity waves. A simple alternative scheme with improved stability is proposed and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号