首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
  国内免费   1篇
大气科学   8篇
地球物理   23篇
地质学   15篇
海洋学   49篇
天文学   4篇
自然地理   5篇
  2018年   2篇
  2016年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   10篇
  2009年   9篇
  2008年   11篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1987年   1篇
  1986年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有104条查询结果,搜索用时 656 毫秒
11.
The chemical composition and toxicity of a water soluble fraction (WSF) of oil versus the underlying water after in situ burning (ISB), has been studied in a laboratory experiment. A system for allowing water sampling after ISB was developed. Seawater samples and oil were collected prior to and immediately after ISB, and chemical analysis was conducted. The chemical characterization of the water showed that the disappearance of water soluble oil components during ISB was insignificant. Acute toxicity tests with the marine copepod Calanus finmarchicus and Microtox® bioassay was performed to establish LC50/EC50 values of the water. The results were compared with regular WAF systems with unburned weathered oil, and indicated no increase in toxicity in the underlying water after ISB.  相似文献   
12.
Marine seismic data are always affected by noise. An effective method to handle a broad range of noise problems is a time‐frequency de‐noising algorithm. In this paper we explain details regarding the implementation of such a method. Special emphasis is given to the choice of threshold values, where several different strategies are investigated. In addition we present a number of processing results where time‐frequency de‐noising has been successfully applied to attenuate noise resulting from swell, cavitation, strumming and seismic interference. Our seismic interference noise removal approach applies time‐frequency de‐noising on slowness gathers (τ?p domain). This processing trick represents a novel approach, which efficiently handles certain types of seismic interference noise that otherwise are difficult to attenuate. We show that time‐frequency de‐noising is an effective, amplitude preserving and robust tool that gives superior results compared to many other conventional de‐noising algorithms (for example frequency filtering, τ?p or fx‐prediction). As a background, some of the physical mechanisms responsible for the different types of noise are also explained. Such physical understanding is important because it can provide guidelines for future survey planning and for the actual processing.  相似文献   
13.
The interaction between two important mechanisms which causes streaming has been investigated by numerical simulations of the seabed boundary layer beneath both sinusoidal waves and Stokes second order waves, as well as horizontally uniform bottom boundary layers with asymmetric forcing. These two mechanisms are streaming caused by turbulence asymmetry in successive wave half-cycles (beneath asymmetric forcing), and streaming caused by the presence of a vertical wave velocity within the seabed boundary layer as earlier explained by Longuet-Higgins. The effect of wave asymmetry, wave length to water depth ratio, and bottom roughness have been investigated for realistic physical situations. The streaming induced sediment dynamics near the ocean bottom has been investigated; both the resulting suspended load and bedload are presented. Finally, the mass transport (wave-averaged Lagrangian velocity) has been studied for a range of wave conditions. The streaming velocities beneath sinusoidal waves (Longuet-Higgins streaming) is always in the direction of wave propagation, while the streaming velocities in horizontally uniform boundary layers with asymmetric forcing are always negative. Thus the effect of asymmetry in second order Stokes waves is either to reduce the streaming velocity in the direction of wave propagation, or, for long waves relative to the water depth, to induce a streaming velocity against the direction of wave propagation. It appears that the Longuet-Higgins streaming decreases as the wave length increases for a given water depth, and the effect of wave asymmetry can dominate, leading to a steady streaming against the wave propagation. Furthermore, the asymmetry of second order Stokes waves reduces the mass transport (wave-averaged Lagrangian velocity) as compared with sinusoidal waves. The boundary layer streaming leads to a wave-averaged transport of suspended sediments and bedload in the direction of wave propagation.  相似文献   
14.
The paper provides a joint distribution of significant wave height and characteristic surf parameter. The characteristic surf parameter is given by the ratio between the slope of a beach or a structure and the square root of the characteristic wave steepness in deep water defined in terms of the significant wave height and the spectral peak period. The characteristic surf parameter is used to characterize surf zone processes and is relevant for e.g. wave run-up on beaches and coastal structures. The paper presents statistical properties of the wave parameters as well as an example of results corresponding to typical field conditions.  相似文献   
15.
This paper provides a method by which the scour depth below pipelines and around single vertical piles for combined random waves plus current including effects of second-order wave asymmetry can be derived. Here the empirical formulas proposed by Sumer and Fredsøe [1996. Scour below pipelines in combined waves and current. In: Proceedings of the 15th OMAE Conference, Florence, Italy. Vol. 5, ASME, New York, pp. 595–602] for pipelines, and by Sumer and Fredsøe [2002. The mechanics of scour in the marine environment. World Scientific, Singapore] for vertical piles are used together with Stokes second-order wave theory by assuming the basic harmonic wave motion to be a stationary Gaussian narrow-band random process. Comparisons are made with the Sumer and Fredsøe [1996. Scour below pipelines in combined waves and current. In: Proceedings of the 15th OMAE Conference, Florence, Italy. Vol. 5, ASME, New York, pp. 595–602; 2001. Scour around pile in combined waves and current. Journal of Hydraulic Engineering, 127(5), 403–411] data for linear random waves plus current. An example of calculation is also presented.  相似文献   
16.
This paper provides a practical method by which the drag force on a vegetation field beneath nonlinear random waves can be estimated. This is achieved by using a simple drag formula together with an empirical drag coefficient given by Mendez et al. (Mendez, F.J., Losada, I.J., Losada, M.A., 1999. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res. 104 (C8), 18383–18396). Effects of nonlinear waves are included by using Stokes second order wave theory where the basic harmonic motion is assumed to be a stationary Gaussian narrow–band random process. An example of calculation is also presented.  相似文献   
17.
The plankton abundance data of the Continuous Plankton Recorder (CPR) route from Bergen or Rotterdam to Weather Station Mike (6444N, 2E) from 1949 to 1981 were analysed for long-term trends and seasonal production cycles, and were related to environmental data. The data were explored using the canonical correlation analysis and nonparametric techniques like the Nadaraya–Watson regression. While large copepods such as Calanus spp. and Metridia lucens did not show any temporal trends, a sharp decrease in the abundances of smaller copepods and phytoplankton was observed after 1960. The temporal trends were not related to the NAO, but did show a correlation with the wind direction. Seasonal abundance curves showed that production of both phytoplankton and zooplankton taxa started earlier in coastal water compared to Atlantic water. From the 1950s to the 1970s most taxa showed a delay in the start of the seasonal production cycles, indicating a reduction in the length of the productive cycle. This may to some extent explain the reduced abundance of smaller copepods, phytoplankton and other species during the 1960s and 1970s.  相似文献   
18.
High pressure, hot water shore cleaning after an oil spill will release high concentrations of petroleum hydrocarbons to ambient marine ecosystems. The immediate increase of hydrocarbons observed in blue mussels, Mytilus edulis, went from background concentrations of 40 μg/g to 657 μg/g and 533 μg/g at a distance of 3 and 8m respectively from the shore. After two weeks the accumulated oil had decreased by 20–45 %. In comparison natural surf and ice cleaning of shores will only produce a small increase in hydrocarbon concentrations. We recommend that high pressure, hot water cleaning is not used in areas where no special bird or wild life protection is needed.  相似文献   
19.
An approach by which the scour depth and scour width below a fixed pipeline and scour depth around a circular vertical pile in random waves can be derived is presented. Here, the scour depth formulas by Sumer and Fredsøe [ASCE J. Waterw., Port, Coastal Ocean Eng. 116 (1990) 307] for pipelines and Sumer et al. [ASCE J. Waterw., Port, Coastal Ocean Eng. 114 (1992) 599] for vertical piles as well as the scour width formula by Sumer and Fredsøe [The Mechanics of Scour in the Marine Environment, World Scientific, Singapore, 2002] for pipelines combined with describing the waves as a stationary Gaussian narrow-band random process are used to derive the cumulative distribution functions of the scour depths and width. Comparisons are made between the present approach and random wave scour data. Tentative approaches to related random wave scour cases are also suggested.  相似文献   
20.
Food webs and carbon flux in the Barents Sea   总被引:6,自引:3,他引:6  
Within the framework of the physical forcing, we describe and quantify the key ecosystem components and basic food web structure of the Barents Sea. Emphasis is given to the energy flow through the ecosystem from an end-to-end perspective, i.e. from bacteria, through phytoplankton and zooplankton to fish, mammals and birds. Primary production in the Barents is on average 93 g C m−2 y−1, but interannually highly variable (±19%), responding to climate variability and change (e.g. variations in Atlantic Water inflow, the position of the ice edge and low-pressure pathways). The traditional focus upon large phytoplankton cells in polar regions seems less adequate in the Barents, as the cell carbon in the pelagic is most often dominated by small cells that are entangled in an efficient microbial loop that appears to be well coupled to the grazing food web. Primary production in the ice-covered waters of the Barents is clearly dominated by planktonic algae and the supply of ice biota by local production or advection is small. The pelagic–benthic coupling is strong, in particular in the marginal ice zone. In total 80% of the harvestable production is channelled through the deep-water communities and benthos. 19% of the harvestable production is grazed by the dominating copepods Calanus finmarchicus and C. glacialis in Atlantic or Arctic Water, respectively. These two species, in addition to capelin (Mallotus villosus) and herring (Clupea harengus), are the keystone organisms in the Barents that create the basis for the rich assemblage of higher trophic level organisms, facilitating one of the worlds largest fisheries (capelin, cod, shrimps, seals and whales). Less than 1% of the harvestable production is channelled through the most dominating higher trophic levels such as cod, harp seals, minke whales and sea birds. Atlantic cod, seals, whales, birds and man compete for harvestable energy with similar shares. Climate variability and change, differences in recruitment, variable resource availability, harvesting restrictions and management schemes will influence the resource exploitation between these competitors, that basically depend upon the efficient energy transfer from primary production to highly successful, lipid-rich zooplankton and pelagic fishes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号