首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   24篇
  国内免费   3篇
测绘学   8篇
大气科学   25篇
地球物理   86篇
地质学   102篇
海洋学   35篇
天文学   44篇
综合类   4篇
自然地理   57篇
  2024年   1篇
  2023年   7篇
  2022年   3篇
  2021年   10篇
  2020年   14篇
  2019年   24篇
  2018年   19篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   16篇
  2011年   22篇
  2010年   16篇
  2009年   19篇
  2008年   23篇
  2007年   18篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   10篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   5篇
  1982年   4篇
  1980年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
321.
Saturn’s moon, Hyperion, is subject to strongly-varying solid body torques from its primary and lacks a stable spin state resonant with its orbital frequency. In fact, its rotation is chaotic, with a Lyapunov timescale on the order of 100 days. In 2005, Cassini made three close passes of Hyperion at intervals of 40 and 67 days, when the moon was imaged extensively and the spin state could be measured. Curiously, the spin axis was observed at the same location within the body, within errors, during all three fly-bys—~ 30° from the long axis of the moon and rotating between 4.2 and 4.5 times faster than the synchronous rate. Our dynamical modeling predicts that the rotation axis should be precessing within the body, with a period of ~ 16 days. If the spin axis retains its orientation during all three fly-bys, then this puts a strong constraint on the in-body precessional period, and thus the moments of inertia. However, the location of the principal axes in our model are derived from the shape model of Hyperion, assuming a uniform composition. This may not be a valid assumption, as Hyperion has significant void space, as shown by its density of 544± 50  kg m−3 (Thomas et al. in Nature 448:50, 2007). This paper will examine both a rotation model with principal axes fixed by the shape model, and one with offsets from the shape model. We favor the latter interpretation, which produces a best-fit with principal axes offset of ~ 30° from the shape model, placing the A axis at the spin axis in 2005, but returns a lower reduced χ 2 than the best-fit fixed-axes model.  相似文献   
322.
Hydrological alterations in watersheds have changed the flows of freshwater to many nearshore marine environments. The ensuing alterations to the salinity environment of coastal waters may have implications for species distribution. This study describes the response of two common bivalves to a modified salinity environment imposed by freshwater inputs from a hydroelectric power station in Doubtful Sound, New Zealand. Populations of Austrovenus stutchburyi and Paphies australis inhabiting river deltas near the outflow of the power station in inner Doubtful Sound were more than an order of magnitude smaller in abundance than populations in neighbouring Bradshaw Sound where the salinity regime is unaltered. In addition, there was a lack of small size classes of both species in inner Doubtful Sound, suggesting that these populations are unsustainable over the long term (10–20 years). Laboratory experiments demonstrated that sustained exposure (>30 days) to low salinity (<10) significantly decreased bivalve survivorship; however, both species survived periods of exposure to freshwater up to at least 20 days in duration if followed by a period of return to normal seawater salinity. Examination of the extant salinity regime in light of these results indicates the current salinity environment in Doubtful Sound restricts bivalves to deeper waters (5–6 m depth). The observed discrepancy in the total biomass of these active suspension feeders between altered and control sites has potential implications for the flux of organic matter in the food webs of Fiordland's shallow soft sediment communities.  相似文献   
323.
A detailed study of the quasi-periodical post-flare variations on November 6, 1980 in X-rays, UV lines, microwaves, and metric waves confirms that these variations were predominantly thermal phenomena and occurred solely in the corona. Only the short-lived impulsive components that preceded all or most of the individual variations were of non-thermal character and penetrated down to the transition layer. The chromosphere (in Hα) did not participate in any part of these events, in contrast to a flare that appeared at the same place a few hours later. However, the X-ray emission of these variations was so strong that the transition layer and the chromosphere definitely should have been enhanced through heat conduction along the magnetic field lines. The expected heat flux at the top of the chromosphere coming from some of these coronal brightenings was 60–80% of the flux expected in the flare at 17:26 which gave rise to a 2B flare in Hα (Figure 8). Therefore, we suggest that the variations were produced in a coronal plasmoid with closed field lines completely detached from the lower atmospheric layers (Figure 9b). We also give reasons why such a detached plasmoid can be expected to be formded in the very late phase (some 4–5 hr after the onset) of a major two-ribbon flare.  相似文献   
324.
Relative absorption cross-sections between 180 Å and 304 Å, and between 584 Å and 304 Å are obtained for atomic oxygen in the upper atmosphere, by observing the attentuation of solar radiation using a satellite instrument.  相似文献   
325.
A testing program was initiated to determine the stress-strain and strength behavior of two very different marine sands (a calcareous sediment from South Australia and a siliceous sediment from the United Kingdom) at elevated confining pressures. The testing matrix consisted of a series of isotropically consolidated, undrained (CIU) and drained (CID), triaxial compression tests on samples of naturally deposited calcareous and siliceous sediment and remolded calcareous sediment. It was found that the calcareous samples displayed little cemented behavior during shear. For tests conducted at pressures up to 1.5 MPa, a significant amount of particle crushing occurred in the calcareous samples but not in the siliceous samples. Particle degradation and reorientation facilitates transitions from dilative to contractive behavior with increases in confining stress. The calcareous sediment exhibited contractive behavior at confining pressures above approximately 500 kPa and the siliceous sediment remained dilative at stresses up to 1 MPa during undrained loading. Comparison with data collected by the University of Sydney (CID tests with confining pressures up to 60 MPa) showed that most of the variations in strength behavior occurred within the low stress range (up to 2 MPa) tests conducted at URI. This was evident in the friction angle data and in the reloading Young's modulus data.  相似文献   
326.
We investigate the distributions of several key diagenetic reactants (C, S, Fe) and redox-sensitive trace metals (Mo, Cd, Re, U) in sediments from Lake Tanganyika, East Africa. This study includes modern sediments from a chemocline transect, which spans oxygenated shallow waters to sulfidic conditions at depth, as well as ancient sediments from a longer core (∼2 m) taken at ∼900 m water depth. Modern sediments from depths spanning ∼70-335 m are generally characterized by increasing enrichments of C, S, Mo, Cd, and U with increasing water depth but static Fe distributions. It appears that the sedimentary enrichments of these elements are, to varying degrees, influenced by a combination of organic carbon cycling and sulfur cycling. These modern lake characteristics contrast with a period of high total organic carbon (Corg), total sulfur (STot), and trace metal concentrations observed in the 900 m core, a period which follows the most recent deglaciation (∼18-11 ky). This interval is followed abruptly by an interval (∼11-6 ky) that is characterized by lower C, S, U, and Mo. Consistent with other work we suspect that the low concentrations of S, Mo, and U may indicate a period of intense lake mixing, during which time the lake may have been less productive and less reducing as compared to the present. An alternative, but not mutually exclusive, hypothesis is that changes in the lake’s chemical inventory, driven by significant hydrological changes, could be influencing the distribution of sedimentary trace elements through time.  相似文献   
327.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
328.
329.
This paper provides the first comprehensive analysis of calanoid copepod vertical zonation and community structure at midwater depths (300–1000 m) through the lower oxygen gradient (oxycline) (0.02 to 0.3 ml/L) of an oxygen minimum zone (OMZ). Feeding ecology was also analyzed. Zooplankton were collected with a double 1 m2 MOCNESS plankton net in day and night vertically-stratified oblique tows from 1000 m to the surface at six stations during four seasons as part of the 1995 US Joint Global Ocean Flux Study (JGOFS) Arabian Sea project. The geographic comparison between a eutrophic more oxygenated onshore station and an offshore station with a strong OMZ served as a natural experiment to elucidate the influence of depth, oxygen concentration, season, food resources, and predators on the copepod distributions.Copepod species and species assemblages of the Arabian Sea OMZ differed in their spatial and vertical distributions relative to environmental and ecological characteristics of the water column and region. The extent and intensity of the oxycline at the lower boundary of the OMZ, and its spatial and temporal variability over the year of sampling, was an important factor affecting distributional patterns. Calanoid copepod species showed vertical zonation through the lower OMZ oxycline. Clustering analyses defined sample groups with similar copepod assemblages and species groups with similar distributions. No apparent diel vertical migration for either calanoid or non-calanoid copepods at these midwater depths was observed, but some species had age-related differences in vertical distributions. Subzones of the OMZ, termed the OMZ Core, the Lower Oxycline, and the Sub-Oxycline, had different copepod communities and ecological interactions. Major distributional and ecological changes were associated with surprisingly small oxygen gradients at low oxygen concentrations. The calanoid copepod community was most diverse in the most oxygenated environments (oxygen >0.14 ml/L), but the rank order of abundance of species was similar in the Lower Oxycline and Sub-Oxycline. Some species were absent or much scarcer in the OMZ Core. Two copepod species common in the Lower Oxycline were primarily detritivorous but showed dietary differences suggesting feeding specialization. The copepod Spinocalanus antarcticus fed primarily on components of the vertical particulate flux and suspended material, a less versatile diet than the co-occurring copepod Lucicutia grandis. Vertical zonation of copepod species through the lower OMZ oxycline is probably a complex interplay between physiological limitation by low oxygen, potential predator control, and potential food resources. Pelagic OMZ and oxycline communities, and their ecological interactions in the water column and with the benthos, may become even more widespread and significant in the future ocean, if global warming increases the extent and intensity of OMZs as predicted.  相似文献   
330.
Marine biogenic emission of dimethylsulfi de(DMS)has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to aff ect climate,especially in the polar regions.We used a global climate model(GCM)to investigate the impact on atmospheric chemistry from a change to the contemporary DMS fl ux to that which has been projected for the late 21 st century.The perturbed simulation corresponded to conditions that pertained to a tripling of equivalent CO 2,which was estimated to occur by year 2090 based on current worst-case greenhouse gas emission scenarios.The changes in zonal mean DMS fl ux were applied to 50°S–70°S Antarctic(ANT)and 65°N–80°N Arctic(ARC)regions.The results indicate that there are clearly diff erent impacts after perturbation in the southern and northern polar regions.Most quantities related to the sulfur cycle show a higher increase in ANT.However,most sulfur compounds have higher peaks in ARC.The perturbation in DMS fl ux leads to an increase of atmospheric DMS of about 45%in ANT and 33.6%in ARC.The sulfur dioxide(SO 2)vertical integral increases around 43%in ANT and 7.5%in ARC.Sulfate(SO 4)vertical integral increases by 17%in ANT and increases around 6%in ARC.Sulfur emissions increases by 21%in ANT and increases by 9.7%in ARC.However,oxidation of DMS by OH increases by 38.2%in ARC and by 15.17%in ANT.Aerosol optical depth(AOD)increases by 4%in the ARC and by 17.5%in the ANT,and increases by 22.8%in austral summer.The importance of the perturbation of the biogenic source to future aerosol burden in polar regions leads to a cooling in surface temperature of 1 K in the ANT and 0.8 K in the ARC.Generally,polar regions in the Antarctic Ocean will have a higher off setting eff ect on warming after DMS fl ux perturbation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号