首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2586篇
  免费   41篇
  国内免费   27篇
测绘学   245篇
大气科学   163篇
地球物理   526篇
地质学   912篇
海洋学   59篇
天文学   627篇
综合类   21篇
自然地理   101篇
  2022年   23篇
  2021年   29篇
  2020年   34篇
  2019年   29篇
  2018年   138篇
  2017年   111篇
  2016年   151篇
  2015年   76篇
  2014年   130篇
  2013年   150篇
  2012年   105篇
  2011年   115篇
  2010年   98篇
  2009年   110篇
  2008年   88篇
  2007年   62篇
  2006年   59篇
  2005年   57篇
  2004年   32篇
  2003年   41篇
  2002年   54篇
  2001年   36篇
  2000年   39篇
  1999年   44篇
  1998年   34篇
  1997年   37篇
  1996年   28篇
  1995年   27篇
  1994年   34篇
  1993年   29篇
  1992年   31篇
  1991年   40篇
  1990年   28篇
  1989年   41篇
  1988年   48篇
  1987年   52篇
  1986年   36篇
  1985年   35篇
  1984年   61篇
  1983年   58篇
  1982年   34篇
  1981年   21篇
  1980年   27篇
  1979年   16篇
  1978年   19篇
  1976年   12篇
  1974年   11篇
  1973年   12篇
  1972年   14篇
  1971年   10篇
排序方式: 共有2654条查询结果,搜索用时 15 毫秒
841.
842.
A fossil wood of Lagerstroemia L. from the Upper Siwalik sediments of Arunachal Pradesh is described. The genus is recorded for the first time from this state. The modern analog of the fossil species i.e. L. tomentosa C. Presl is not found in the fossil locality at present.. The most plausible reason for the disappearance of the species from the fossil locality is an increase in temperature seasonality caused by the upheaval of the Himalaya during the Pleistocene.  相似文献   
843.
The existence of gas-hydrates in marine sediments increases the seismic velocity, whereas even a small amount of underlying free-gas reduces the velocity considerably. The change in velocities against the background (without gas-hydrates and free-gas) velocity can be used for identification and assessment of gas-hydrates. Traveltime inversion of identifiable reflections from large offset multi channel seismic (MCS) experiment is an effective method to derive the 2-D velocity structure in an area. We apply this method along a seismic line in the Kerala-Konkan (KK) offshore basin for delineating the gas-hydrates and free-gas bearing sediments across a bottom simulating reflector (BSR). The result reveals a four layer 2-D shallow velocity model with the topmost sedimentary layer having velocity of 1,680–1,740 m/s and thickness of 140–190 m. The velocity of the second layer of uniform thickness (110 m) varies from 1,890 to 1,950 m/s. The third layer, exhibiting higher velocity of 2,100–2,180 m/s, is interpreted as the gas-hydrates bearing sediment, the thickness of which is estimated as 100 to 150 m. The underlying sedimentary layer shows a reduction in seismic velocity between 1,620 to 1,720 m/s. This low-velocity layer with 160–200 m thickness may be due to the presence of free-gas below the gas-hydrates layer.  相似文献   
844.
845.
Gravity and bathymetry data have been extensively used to infer the thermo-mechanical evolution of different segments of the oceanic lithosphere. It is now understood that magmatic fluid processes involved in the accretion of oceanic crust are spatially complex and episodic. The nature of these processes which are in general nonlinear, can be described using fractal analysis of marine geophysical data. Fractal analysis has been carried out for gravity and bathymetry profiles over the aseismic Chagos-Laccadive Ridge and the spreading Carlsberg Ridge. The Iterated Function Systems (IFS) have been used to generate synthetic profiles of known dimension (D) and these are compared with the observed profiles. The D for the data sets are in the range of 1–1.5. The D for gravity profiles is less than those of bathymetry and the D for gravity and bathymetry over spreading ridge is higher than the aseismic ridge. The low fractal dimension indicates that the processes generating them are of low dimensional dynamical systems.  相似文献   
846.
National Highway-39 is the only lifeline of the state of Manipur. The sector between Karong and Mao is highly landslide prone and frequently blocked the NH-39. The area is represented by Disang and Barail Groups of rock. Considering the importance of NH-39, landslide susceptibility zonation studies along NH-39 between Karong and Mao were carried out following GSI guideline, a modified form of BIS (1998).  相似文献   
847.
In the uppermost parts of the Higher Himalayan Crystallines (HHC) of the Great Himalaya, widespread in situ partial melting of sillimanite+K-feldspar gneiss resulted in the formation of migmatite and resultant melt accumulation near the South Tibetan Detachment System (STDS) during various deformation events along the Dhauli Ganga valley in Garhwal. The oldest migmatite phase, designated as the Me1, parallels the main foliation Sm as the stromatite layers and concordant leucogranite bands. Younger melt phases Me2, Me3 and Me5 are recorded along small-scale ductile thrusts, extensional fabric and structureless patches, respectively. It is only the Me4 melting phase that is evidenced by large-scale melt migration along cross-cutting irregular veins. These were possible conduits for migration and accumulation of melt into larger leucogranite bodies like the Malari granite (19.0± 0.5 Ma).  相似文献   
848.
S. Tyagi  V. Singh 《Annales Geophysicae》1998,16(12):1599-1606
In this study, the morphology of the oxygen greenline dayglow emission is presented. The volume emission rate profiles are obtained by using Solomons glow model. The glow model is updated in terms of recent cross sections, reaction rate coefficients and quantum yield of greenline emission. Throughout most of the thermosphere the modelled and observed emission rates are in reasonably good agreement. In the region between 98 and 120 km, the modelled emission rates are substantially higher (about a factor of 1.7) than the observed emission rates. This discrepancy is discussed in terms of scaling of solar fluxes which accounts the variation of solar activity for the day on which calculations are made. The modelled morphology of greenline emission is compared with those cases where WINDII data is available. The modelled and observed morphology is in reasonably good agreement at most of the latitudes above 120 km. In the mesosphere the qualitative nature of morphology is very similar to those of WINDII observation except the modelled emission rates are about a factor of 1.7 higher than the observed emission rates.  相似文献   
849.
—Rayleigh and Love waves generated by sixteen earthquakes which occurred in the Indian Ocean and were recorded at 13 WWSSN stations of Asia, Africa and Australia are used to determine the moment tensor solution of these earthquakes. A combination of thrust and strike-slip faulting is obtained for earthquakes occurring in the Bay of Bengal. Thrust, strike slip or normal faulting (or either of the combination) is obtained for earthquakes occurring in the Arabian Sea and the Indian Ocean. The resultant compressive and tensional stress directions are estimated from more than 300 centroid moment tensor (CMT) solution of earthquakes occurring in different parts of the Indian Ocean. The resultant compressive stress directions are changing from north-south to east-west and the resultant tensional stress directions from east-west to north-south in different parts of the Indian Ocean. The results infer the counterclockwise movement of the region (0°–33°S and 64°E–94°E), stretching from the Rodriguez triple junction to the intense deformation zone of the central Indian Ocean and the formation of a new subduction zone (island arc) beneath the intense deformation zone of the central Indian Ocean and another at the southern part of the central Indian basin. The compressive stress direction is along the ridge axis and the extensional stress manifests across the ridge axis. The north-south to northeast-south west compression and east-west to northwest-southeast extension in the Indian Ocean suggest the northward underthrusting of the Indian plate beneath the Eurasian plate and the subduction beneath the Sunda arc region in the eastern part. The focal depth of earthquakes is estimated to be shallow, varying from 4 to 20 km and increasing gradually in the age of the oceanic lithosphere with the focal depth of earthquakes in the Indian Ocean.  相似文献   
850.
Floods are the most frequently occurring natural hazard in Canada. An in-depth understanding of flood seasonality and its drivers at a national scale is essential. Here, a circular, statistics-based approach is implemented to understand the seasonality of annual-maximum floods (streamflow) and to identify their responsible drivers across Canada. Nearly 80% and 70% of flood events were found to occur during spring and summer in eastern and western watersheds across Canada, respectively. Flooding in the eastern and western watersheds was primarily driven by snowmelt and extreme precipitation, respectively. This observation suggests that increases in temperature have led to early spring snowmelt-induced floods throughout eastern Canada. Our results indicate that precipitation (snowmelt) variability can exert large controls on the magnitude of flood peaks in western (eastern) watersheds in Canada. Further, the nonstationarity of flood peaks is modelled to account for impact of the dynamic behaviour of the identified flood drivers on extreme-flood magnitude by using a cluster of 74 generalized additive models for location scale and shape models, which can capture both the linear and nonlinear characteristics of flood-peak changes and can model its dependence on external covariates. Using nonstationary frequency analysis, we find that increasing precipitation and snowmelt magnitudes directly resulted in a significant increase in 50-year streamflow. Our results highlight an east–west asymmetry in flood seasonality, indicating the existence of a climate signal in flood observations. The understating of flood seasonality and flood responses under the dynamic characteristics of precipitation and snowmelt extremes may facilitate the predictability of such events, which can aid in predicting and managing their impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号