首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
大气科学   1篇
地球物理   1篇
地质学   4篇
海洋学   10篇
自然地理   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有17条查询结果,搜索用时 218 毫秒
11.
Rapid growth in the water transport system demands the construction of more port and harbour structures. Berthing structures are constructed in ports and harbours to provide facilities such as berthing and mooring of vessels, loading and unloading of cargo and embarking and disembarking of passengers. Quays, wharfs, piers, jetties and dolphins are the most widely used berthing structures. The construction and maintenance of these structures are very expensive and, therefore, the most economical design should be adopted. These structures will be checked against limit state of crack, which is important in respect to preventing corrosion. A knowledge based expert system, KNOWBESTD, has been developed using LEVEL5 OBJECT for the design of berthing structures. This paper describes the development of KNOWBESTD and illustrates the design of a typical berthing structure.  相似文献   
12.
In probabilistic seismic demand analysis, evaluation of the sufficiency of an intensity measure (IM) is an important criterion to avoid biased assessment of the demand hazard. However, there exists no metric to quantify the degree of sufficiency as per the criterion of Luco and Cornell (2007). This paper proposes a site‐specific unified measure for degree of sufficiency from all seismological parameters under consideration using a total information gain metric. This unified metric for sufficiency supports not only comparison of the performance of different IMs given a response quantity but also assessment of the performance of a particular IM across different response quantities. The proposed sufficiency metric was evaluated for a 4‐story steel moment frame building, and the influence of ground motion selection on the degree of sufficiency was investigated. It was observed that ground motion selection can have a significant impact on IM sufficiency. Because computing the total information gain requires continuous deaggregation across the IM space, an approximate deaggregation technique that allows for a more practical estimation of marginal deaggregation probabilities is proposed. It is expected that the total information gain metric proposed in this paper will aid in understanding the efficiency‐sufficiency relation, thus enabling the selection of a proper scalar IM for a given site and application in probabilistic seismic demand analysis.  相似文献   
13.
The present study investigated how the perforations, water depth and rubble mound height on fully perforated semicircular breakwater (SBW) affects non-breaking wave transformations. SBW model with surface piercing condition for three different perforation ratios with 7 percentage, 11 percentage and 17 percentage were considered to study the variation of reflection, transmission, run-up characteristics and dimensionless horizontal and vertical forces as a function of relative water depth and the results are compared with an impermeable SBW and seaside perforated SBW models. From the results it is understood that, SBW with perforation ratio 17 percentage in the case of seaside perforated case shows reverse trend in hydrodynamic characteristics and for fully perforated SBW, it transmits large amount of wave energy on the seaside, which affects the tranquillity condition in the harbour. In addition, transmission characteristics of SBW models and conventional rubble mound breakwater model are compared to understand the effect of composite breakwater action and also the reflection characteristics of SBW models are compared with field data of Miyazaki Port after Sasajima et al. (1994). The results reveal that the SBW model with perforation ratio of 11 percentage in seaside and fully perforated type gives an optimum performance in terms of energy dissipation and transmission.  相似文献   
14.
A sea water intake well of size 20 m diameter and 15.5 m height in a water depth of 9.8 m is proposed north of the Visakhapatnam Port for a project to extract magnesia from sea water. A 1:25 scale model of the intake well was tested in the wave basin of the Ocean Engineering Centre, Indian Institute of Technology, Madras to measure the wave forces and moments on the intake well and the variation of water levels inside and outside the well. Accordingly, an intake well model of 0.8 m diameter and 0.62 m height was fabricated and fixed over a false bottom in a wave basin. The well model was subjected to the action of both regular waves for two test conditions, intake well inlet closed during installation and intake well inlet open. The experimental results on wave forces and moments were compared with the results of the Linear Diffraction Theory. The water level inside the well was measured to determine the submergence of suction pipes of pumps and location of the inlet opening of the intake well. The wave crest elevation in front of the well was also measured in order to fix the deck level of the well so as to avoid water overspill onto the deck. The salient results of the present study are presented and discussed in this paper.  相似文献   
15.
The semicircular breakwater (SBW) is a composite breakwater consisting of a semicircular caisson resting on a rubble mound. The SBW function as a barrier dissipates the incident wave energy and creates tranquillity on its leeside. The dynamic pressures due to regular waves exerted on seaside perforated SBWs with 7 and 11% of exposed surface area with perforations were measured. The measured pressures are compared with those exerted on impermeable SBWs. In addition, the forces exerted on the caisson alone are measured. The reflection coefficient, measured total forces on the caisson of the models, and the pressures are presented as functions of relative water depth. The effect of the water depth and the percentage of perforations on the above stated variables are examined, details of which are reported in this paper.  相似文献   
16.
The dynamics of multiple floating structures have been studied using the finite element method. The emphasis is on the hydrodynamic behaviour of multiple bodies under a multi-directional wave field. A two-dimensional numerical model has been adopted to evaluate hydrodynamic coefficients and forces in an oblique wave field. The responses in sway, heave and roll modes are reported. The linear filter technique is then used to extrapolate the responses under directional waves. The effect of mean wave direction and directional homogeneity on the hydrodynamic behaviour of the structure is studied. Based on the present study, it is found that the two-dimensional model is applicable to investigate the wave-structure interaction problems of the type herein considered.  相似文献   
17.
Piles and diaphragm wall-supported berthing structure on marine soils are loaded laterally from horizontal soil movements generated by dredging. The literature on the adequacy of the finite element method modeling of berthing structure to analyze their behavior during dredging is limited. This paper describes a finite element approach for analyzing the lateral response of pile and diaphragm wall during dredging. Piles are represented by equivalent sheet-pile walls and a plane strain analysis using the finite element method is performed. Results from the finite element method are compared with full-scale field test data. Full-scale field test was conducted on a bearing structure to measure the lateral deflection on pile and diaphragm wall for their full length using inclinometer during dredging in sequence. The finite element method results are in good agreement with full-scale field results. Conclusions are drawn regarding application of the analytical method to study the effect of dredging on piles and diaphragm wall-supported berthing structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号