首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   3篇
  国内免费   3篇
测绘学   33篇
大气科学   48篇
地球物理   35篇
地质学   127篇
海洋学   20篇
天文学   78篇
综合类   4篇
自然地理   9篇
  2023年   1篇
  2022年   4篇
  2021年   12篇
  2020年   9篇
  2019年   6篇
  2018年   12篇
  2017年   18篇
  2016年   20篇
  2015年   3篇
  2014年   20篇
  2013年   29篇
  2012年   9篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   15篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   6篇
  2000年   13篇
  1999年   10篇
  1998年   11篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   7篇
  1989年   8篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有354条查询结果,搜索用时 78 毫秒
51.
An assessment of cyclone risk and vulnerability at the village level has evolved, which is an important component of the information system for local level development action plans for preparedness and mitigation. Here, a case study for the Nellore district along the east coast of India is considered. Using maximum probable surges along the coast, total water level (TWL) due to the combined effect of surge, tide, and wind wave is computed for the most vulnerable coastal villages of the Nellore district due to any tropical cyclones. The computations suggest that the TWL along the Nellore coast varies from 2 m in the south to 4 m in the north.  相似文献   
52.
Abstract

New mathematical programming models are proposed, developed and evaluated in this study for estimating missing precipitation data. These models use nonlinear and mixed integer nonlinear mathematical programming (MINLP) formulations with binary variables. They overcome the limitations associated with spatial interpolation methods relevant to the arbitrary selection of weighting parameters, the number of control points within a neighbourhood, and the size of the neighbourhood itself. The formulations are solved using genetic algorithms. Daily precipitation data obtained from 15 rain gauging stations in a temperate climatic region are used to test and derive conclusions about the efficacy of these methods. The developed methods are compared with some naïve approaches, multiple linear regression, nonlinear least-square optimization, kriging, and global and local trend surface and thin-plate spline models. The results suggest that the proposed new mathematical programming formulations are superior to those obtained from all the other spatial interpolation methods tested in this study.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Teegavarapu, R.S.V., 2012. Spatial interpolation using nonlinear mathematical programming models for estimation of missing precipitation records. Hydrological Sciences Journal, 57 (3), 383–406.  相似文献   
53.
Abstract

New optimal proximity-based imputation, K-nearest neighbour (K-NN) classification and K-means clustering methods are proposed and developed for estimation of missing daily precipitation records. Mathematical programming formulations are developed to optimize the weighting, classification and clustering schemes used in these methods. Ten different binary and real-valued distance metrics are used as proximity measures. Two climatic regions, Kentucky and Florida, (temperate and tropical) in the USA, with different gauge density and network structure, are used as case studies to evaluate the new methods. A comprehensive exercise is undertaken to compare the performances of the new methods with those of several deterministic and stochastic spatial interpolation methods. The results from these comparisons indicate that the proposed methods performed better than existing methods. Use of optimal proximity metrics as weights, spatial clustering of observation sites and classification of precipitation data resulted in improvement of missing data estimates.
Editor D. Koutsoyiannis; Associate editor C. Onof  相似文献   
54.
Precision agriculture often relies on high-resolution imagery to delineate the variability within a field. Airborne Environmental Research Observational Camera (AEROCam) was designed to meet the needs of agriculture producers, ranchers, and researchers, who require high-resolution imagery in a near real-time environment for rapid decision support. AEROCam was developed and operated through a unique collaboration between several departments at the University of North Dakota, including the Upper Midwest Aerospace Consortium (UMAC), the School of Engineering and Mines, and flight operations at the John D. Odegard School of Aerospace Sciences. AEROCam consists of a Redlake MS4100 area-scan multi-spectral digital camera that features a 1920 × 1080 CCD array (7.4-μm detector) with 8-bit quantization. When operated at ~2 km above ground level, multispectral images with four bands in the visible and near infrared have a ground sample distance of 1 m with a horizontal extent of just over 1.6 km. Depending on the applications, flying at different altitudes can adjust the spatial resolution from 0.25 to 2 m. Rigorous spectral and radiometric calibrations allow AEROCam to be used in a variety of applications, qualitative and quantitative. Equipped with an inertial measurement unit (IMU) system, the images acquired can be geo-referenced automatically and delivered to end users near real time through our Digital Northern Great Plains system (DNGP). The images are also available to zone mapping application for precision farming (ZoneMAP), an online decision support tool for creating management zones from remote sensing imagery and data from other sources. Operational since 2004, AEROCam has flown over 250 sorties and delivered over 150,000 images to the users in the Northern Great Plains region, resulting in numerous applications in precision agriculture and resource management.  相似文献   
55.
Prajapati  V. K.  Khanna  M.  Singh  M.  Kaur  R.  Sahoo  R. N.  Singh  D. K. 《Theoretical and Applied Climatology》2022,149(1-2):207-220
Theoretical and Applied Climatology - This paper presents a composite approach for drought characterization and monitoring using in situ and remote sensing-based drought indicators. The study was...  相似文献   
56.
With heightened concerns on CO2 emissions from pulverized-coal (PC) power plants, there has been major emphasis in recent years on the development of safe and economical geological carbon sequestration (GCS) technology. Saline aquifers are considered very attractive for GCS because of their large storage capacity in U.S. and other parts of the world for long-term sequestration. However, uncertainties about storage efficiency as well as leakage risks remain major areas of concern that need to be addressed before the saline aquifers can be fully exploited for carbon sequestration. A genetic algorithm-based optimizer has been developed and coupled with the well-known multiphase numerical solver TOUGH2 to optimally examine various injection strategies for increasing the CO2 storage efficiency as well as for reducing its plume migration. The optimal injection strategies for CO2 injection employing a vertical injection well and a horizontal injection well are considered. To ensure the accuracy of the results, the combined hybrid numerical solver/optimizer code was validated by conducting simulations of three widely used benchmark problems employed by carbon sequestration researchers worldwide. The validated code is then employed to optimize the proposed water-alternating-gas injection scheme for CO2 sequestration using both the vertical and the horizontal injection wells. The results suggest the potential benefits of CO2 migration control and dissolution. The optimization capability of the hybrid code holds a great promise in studying a host of other problems in GCS, namely how to optimally enhance capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.  相似文献   
57.
Hydrogeochemical studies were carried out in the Ghataprabha River sub-basin to assess the quality and suitability of groundwater for domestic and irrigation purposes. In the present study, an integrated, geophysical and chemical investigation was carried out in the basaltic terrain. Groundwater samples were collected covering the entire major hydrogeological environment for one hydrological cycle. Comparison of the groundwater quality in relation to drinking water quality standards proves that most of the water samples are not suitable for drinking. Chemical indices such as sodium percentage, sodium adsorption ratio and chloroalkaline indices used for evaluating the water quality for irrigation suggest that the majority of the groundwater samples were good for irrigation. Positive values of 74% of groundwater samples indicated the absence of base exchange reaction (chloroalkaline disequilibrium) and negative ratio of 26% samples indicated a base exchange reaction (chloroalkaline equilibrium). Resistivity tomography studies revealed that the high concentration of total dissolved solids, chloride and sodium were due to the local anthropogenic activities and weathering of basalt rocks.  相似文献   
58.
The day-to-day behavior of Indian summer monsoon rainfall (IMR) is associated with a hierarchy of quasi-periods, namely 3?C7, 10?C20 and the 30?C60?days. These two periods, the 10?C20?days and the 30?C60?days have been related with the active and break cycles of the monsoon rainfall over the Indian sub-continent. The seasonal strength of Indian summer monsoon rainfall may depend on the frequency and duration of spells of break and active periods associated with the fluctuations of the above intra-seasonal oscillations (ISOs). Thus the predictability of the seasonal (June through September) mean Indian monsoon depends on the extent to which the intra-seasonal oscillations could be predicted. The primary objective of this study is to bring out the dynamic circulation features during the pre-monsoon/monsoon season associated with the extreme phases of these oscillations The intense (weak) phase of the 10?C20 (30?C60) days oscillation is associated with anti-cyclonic circulation over the Indian Ocean, easterly flow over the equatorial Pacific Ocean resembling the normal or cold phase (La Nina) of El Nino Southern Oscillation (ENSO) phenomenon, and weakening of the north Pacific Sub-tropical High. On the other hand the weak phase of 10?C20?days mode and the intense phase of 30?C60?days mode shows remarkable opposite flow patterns. The circulation features during pre-monsoon months show that there is a tendency for the flow patterns observed in pre-monsoon months to persist during the monsoon months. Hence some indications of the behavior of these modes during the monsoon season could be foreshadowed from the spring season patterns. The relationship between the intensity of these modes and some of the long-range forecasting parameters used operationally by the India Meteorological Department has also been examined.  相似文献   
59.
Ground Radiometric survey of Paleoproterozoic pyritiferous quartz-pebble conglomerate (QPC) occurring to the north of Pallahara area led to the discovery of a QPC type uranium mineralisation near Mankarhachua village. Significant radioactivity is recorded in three sub-parallel uraniferous QPC horizons with metamorphosed pebbly to medium grained recrystallised massive sandstones. Detrital grains of uranothorite, thorite, radioactive allanite, monazite, zircon, minute uraninite grains in carbonaceous matter and thucolite contributes to the radioactive phases present in QPC matrix. Adsorbed U on limonite and goethite, secondary uranyl minerals in matrix, along bedding planes and fractures are commonly observed. This discovery has opened up a new horizon for future exploration for QPC type uranium mineralization in the area. The paper presents observations on geology, radioactivity, petrological and geochemical nature of the uraniferous QPC horizons.  相似文献   
60.
Tanneries located in an industrial development area of Ranipet (India) manufactured chromate chemicals during 1976?C1996. A large quantity of associated hazardous solid wastes has been stacked about 5-m high above ground level, spread over 3.5?ha inside one of the factory premises. The study area receives an average annual rainfall of 1,100?mm. The granitic formation in the northern part of Palar River catchment has high infiltration rates and has resulted in fast migration of the contamination to the water table. Chromium levels in the groundwater were found up to 275?mg/l. The available hydrogeological, geophysical and groundwater quality data bases have been used to construct a groundwater flow and mass transport model for assessing the groundwater contamination and it has been calibrated for the next 30?years. The migration has been found to be very slow, with a groundwater velocity of 10?m/year. This is the first field-scale study of its kind in this industrial area. The findings are of relevance to addressing the groundwater pollution due to indiscriminate disposal practices of hazardous waste in areas located on the phreatic aquifer. Further, it has been reported that the untreated effluent discharge adjacent to the chromium dump site is most influential in the migration of contaminants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号