首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1969篇
  免费   81篇
  国内免费   10篇
测绘学   71篇
大气科学   165篇
地球物理   411篇
地质学   691篇
海洋学   152篇
天文学   362篇
综合类   5篇
自然地理   203篇
  2021年   26篇
  2020年   26篇
  2019年   28篇
  2018年   47篇
  2017年   49篇
  2016年   65篇
  2015年   51篇
  2014年   45篇
  2013年   123篇
  2012年   100篇
  2011年   99篇
  2010年   81篇
  2009年   116篇
  2008年   97篇
  2007年   100篇
  2006年   71篇
  2005年   80篇
  2004年   54篇
  2003年   59篇
  2002年   54篇
  2001年   39篇
  2000年   54篇
  1999年   32篇
  1998年   27篇
  1997年   23篇
  1996年   25篇
  1995年   22篇
  1994年   17篇
  1993年   27篇
  1992年   22篇
  1991年   15篇
  1990年   23篇
  1989年   17篇
  1988年   19篇
  1987年   19篇
  1986年   16篇
  1985年   16篇
  1984年   27篇
  1983年   28篇
  1982年   20篇
  1981年   18篇
  1980年   16篇
  1977年   11篇
  1976年   12篇
  1975年   15篇
  1974年   12篇
  1973年   10篇
  1972年   19篇
  1971年   13篇
  1970年   8篇
排序方式: 共有2060条查询结果,搜索用时 351 毫秒
961.
We present 3-D deformation–fluid-flow numerical models which place constraints on the importance of basalt dome shape and syn-mineralising shortening direction in localising structurally controlled gold mineralisation around basalt domes near Stawell, Victoria, Australia. Gold mineralisation in the Magdala ore-body at the Stawell Mine occurs predominantly within a thin altered unit named the Magdala Facies which blankets the basalt domes. In numerical models of the Magdala Dome models only the east–northeast–west–northwest and east–west shortened models record high fluid-flow rates in areas of known mineralisation which is consistent with the syn-mineralisation shortening directions. In models of the Kewell Dome (a prospect to the north), the position of areas of high fluid-flow rate when shortened in the east–northeast–west–northwest and east–west direction, combined with information from limited drilling indicated the potential for gold mineralisation at the south-west end of the dome. Diamond drill holes in this area yielded significant gold values.  相似文献   
962.
963.
In September 1969, the Florida barge spilled 700,000L of No. 2 fuel oil into the salt marsh sediments of Wild Harbor (Buzzards Bay, MA). Today the aboveground environment appears unaffected, but a substantial amount of moderately degraded petroleum still remains 8-20cm below the surface. The salt marsh fiddler crabs, Uca pugnax, burrow into the sediments at depths of 5-25cm, and are chronically exposed to the spilled oil. Behavioral studies conducted with U. pugnax from Wild Harbor and a control site, Great Sippewissett marsh, found that crabs exposed to the oil avoided burrowing into oiled layers, suffered delayed escape responses, lowered feeding rates, and achieved lower densities. The oil residues are therefore biologically active and affect U. pugnax populations. Our results add new knowledge about long-term consequences of spilled oil, a dimension that should be included when assessing oil-impacted areas and developing management plans designed to restore, rehabilitate, or replace impacted areas.  相似文献   
964.
The Gulf of Alaska (GOA) is highly sensitive to shifts in North Pacific climate variability. Here we present an extended tree-ring record of January–September GOA coastal surface air temperatures using tree-ring width data from coniferous trees growing in the mountain ranges along the GOA. The reconstruction (1514–1999), based on living trees, explains 44% of the temperature variance, although, as the number of chronologies decreases back in time, this value decreases to, and remains around ∼30% before 1840. Verification of the calibrated models is, however, robust. Utilizing sub-fossil wood, we extend the GOA reconstruction back to the early eighth century. The GOA reconstruction correlates significantly (95% CL) with both the Pacific Decadal Oscillation Index (0.53) and North Pacific Index (−0.42) and therefore likely yields important information on past climate variability in the North Pacific region. Intervention analysis on the GOA reconstruction identifies the known twentieth century climate shifts around the 1940s and 1970s, although the mid-1920s shift is only weakly expressed. In the context of the full 1,300 years record, the well studied 1976 shift is not unique. Multi-taper method spectral analysis shows that the spectral properties of the living and sub-fossil data are similar, with both records showing significant (95% CL) spectral peaks at ∼9–11, 13–14 and 18–19 years. Singular spectrum analysis identifies (in order of importance) significant oscillatory modes at 18.7, 50.4, 38.0, 91.8, 24.4, 15.3 and 14.1 years. The amplitude of these modes varies through time. It has been suggested (Minobe in Geophys Res Lett 26:855–858, 1999) that the regime shifts during the twentieth century can be explained by the interaction between pentadecadal (50.4 years) and bidecadal (18.7 years) oscillatory modes. Removal of these two modes of variance from our GOA time series does indeed remove the twentieth century shifts, but many are still identified prior to the twentieth century. Our analysis suggests that climate variability of the GOA is very complex, and that much more work is required to understand the underlying oscillatory behavior that is observed in instrumental and proxy records from the North Pacific region.
Rob WilsonEmail:
  相似文献   
965.
Pristine water bodies in the Negro River basin, Brazilian Amazon, show relatively high concentrations of mercury. These waters are characterized by acidic pH, low concentrations of suspended solids, and high amounts of dissolved organic matter and are exposed to intense solar radiation throughout the year. This unique environment creates a very dynamic redox chemistry affecting the mobility of mercury due to the formation of the dissolved elemental species (Hg0). It has been shown that in this so-called black water, labile organic matter from flooded forest is the major scavenger of photogenerated H2O2. In the absence of hydrogen peroxide, these black waters lose their ability to oxidize Hg0 to Hg2+, thus increasing Hg0 evasion across the water/atmosphere interface, with average night time values of 3.80 pmol m?2 h?1. When the dry period starts, labile organic matter inputs gradually diminish, allowing the increasing concentration of H2O2 to re-establish oxidative water conditions, inhibiting the metal flux across the water/atmosphere interface and contributing to mercury accumulation in the water column.  相似文献   
966.
The mixed finite-element approximation to a second-order elliptic PDE results in a saddle-point problem and leads to an indefinite linear system of equations. The mixed system of equations can be transformed into coupled symmetric positive-definite matrix equations, or a Schur complement problem, using block Gauss elimination. A preconditioned conjugate-gradient algorithm is used for solving the Schur complement problem. The mixed finite-element method is closely related to the cell-centered finite difference scheme for solving second-order elliptic problems with variable coefficients. For the cell-centered finite difference scheme, a simple multigrid algorithm can be defined and used as a preconditioner. For distorted grids, an additional iteration is needed. Nested iteration with a multigrid preconditioned conjugate gradient inner iteration results in an effective numerical solution technique for the mixed system of linear equations arising from a discretization on distorted grids. Numerical results show that the preconditioned conjugate-gradient inner iteration is robust with respect to grid size and variability in the hydraulic conductivity tensor.  相似文献   
967.

Granulite facies rocks on Else Platform in the northern Prince Charles Mountains, east Antarctica, consist of metasedimentary gneiss extensively intruded by granitic rocks. The dominant rock type is a layered garnetbiotite‐bearing gneiss intercalated with minor garnet‐cordierite‐sillimanite gneiss and calc‐silicate. Voluminous megacrystic granite intruded early during a mid‐Proterozoic (ca 1000 Ma) granulite event, M1, widely recognized in east Antarctica. Peak metamorphic conditions for M1 are in the range of 650–750 MPa at ~800°C and were associated with the development of a gneissic foliation, S1 and steep east‐plunging lineation, L1. Strain partitioning during progressive non‐coaxial deformation formed large D2 granulite facies south‐dipping thrusts, with a steep, east‐plunging lineation. In areas of lower D2 strain, large‐scale upright, steep east‐plunging fold structures formed synchronously with the D2 high‐strain zones. Voluminous garnet‐bearing leucogneiss intruded at 940 ±20 Ma and was deformed in the D2 high‐strain zones. Textural relationships in pelitic rocks show that peak‐M2 assemblages formed during increasing temperatures via reactions such as biotite + sillimanite + quartz ± plagioclase = spinel + cordierite + ilmenite + K‐feldspar + melt. In biotite‐absent rocks, re‐equilibration of deformed M1 garnet‐sillimanite‐ilmenite assemblages occurred through decompressive reactions of the form, garnet + sillimanite + ilmenite = cordierite + spinel + quartz. Pressure/temperature estimates indicate that peak‐M2 conditions were 500–600 MPa and 700±50°C. At about 500 Ma, north‐trending granitic dykes intruded and were deformed during D3‐M3 at probable upper amphibolite facies conditions. Cooling from peak D3‐M3 conditions was associated with the formation of narrow greenschist facies shear zones, and the intrusion of pegmatite. Cross‐cutting all features are abundant north‐south trending alkaline mafic dykes that were emplaced over the interval ca 310–145 Ma, reflecting prolonged intrusive activity. Some of the dykes are associated with steeply dipping faults that may be related to basin formation during Permian times and later extension, synchronous with the formation of the Lambert Graben in the Cretaceous.  相似文献   
968.
Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. The value of the obliquity must be known precisely in order to constrain the size of the planet's core within the framework suggested by Peale [Peale, S.J., 1976. Nature 262, 765-766]. Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] have suggested that Mercury's obliquity varies on thousand-year timescales due to planetary perturbations, potentially ruining the feasibility of Peale's experiment. We use a Hamiltonian approach (free of energy dissipation) to study the spin-orbit evolution of Mercury subject to secular planetary perturbations. We can reproduce an obliquity evolution similar to that of Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] if we integrate the system with a set of initial conditions that differs from the Cassini state. However the thousand-year oscillations in the obliquity disappear if we use initial conditions corresponding to the equilibrium position of the Cassini state. This result indicates that planetary perturbations do not force short-period, large amplitude oscillations in the obliquity of Mercury. In the absence of excitation processes on short timescales, Mercury's obliquity will remain quasi-constant, suggesting that one of the important conditions for the success of Peale's experiment is realized. We show that interpretation of data obtained in support of this experiment will require a precise knowledge of the spin-orbit configuration, and we provide estimates for two of the critical parameters, the instantaneous Laplace plane orientation and the orbital precession rate from numerical fits to ephemeris data. Finally we provide geometrical relationships and a scheme for identifying the correct initial conditions required in numerical integrations involving a Cassini state configuration subject to planetary perturbations.  相似文献   
969.
We have used digital photography, image analysis and measurements in the field to determine the growth rates of Quaternary corals in the Wakatobi Marine National Park, Indonesia, and compared them to growth rates of similar corals in the same area. In the Quaternary deposits it was possible to measure the growth rates of two massive coral genera Porites and Favites. For each genus, the corals reworked from better‐illuminated upslope environments had higher growth rates than the in situ fossil corals. The calculated radial growth rates for the in situ Porites are slightly lower than, but of the same order of magnitude as, the modern Porites growing in 10 m water depth at Hoga (10.04 ± 3.34 mm yr?1 ± 1 s.d.; n = 3) and Kaledupa (15.26 ± 4.83 mm yr?1 ± 1 s.d.; n = 3). Sedimentation rates and underwater visibility are inferred to have been similar in the fossil site to that at the modern Kaledupa site. Decreasing light penetration due to increased water depth is inferred to have been a major influence on growth rates. The in situ massive corals with good growth banding are inferred to have grown in a comparable environment to modern Kaledupa and Hoga. The study highlights that it is possible to compare coral growth rates, and their influencing parameters, from modern and well‐preserved ancient examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号