首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   4篇
  国内免费   1篇
测绘学   5篇
大气科学   1篇
地球物理   15篇
地质学   49篇
海洋学   5篇
天文学   16篇
自然地理   4篇
  2021年   1篇
  2019年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
71.
72.
Combined Sm–Nd and Lu–Hf age and isotope data indicate that Mg- and Cr-rich ultramafic rocks at Sandvik, Western Gneiss Region (WGR), Norway, originated from depleted Archean lithospheric mantle that was chemically and physically modified in Middle Proterozoic time. The Sandvik outcrop consists of garnet peridotite and garnet-olivine pyroxenite and thin garnet pyroxenite layers. These contain two principal mineral assemblages: an earlier porphyroclastic assemblage of grt + opx + cpx ± ol (1,200–1,000°C, 40–50 kbar) and a later kelyphitic assemblage of grt + spl + am ± opx ± ol (700–750°C; 12–18 kbar). A CHUR Hf model age indicates a period of melt extraction at ca. 3.3 Ga for garnet peridotite, reflecting extremely high Lu/Hf ratios and very radiogenic present-day 176Hf/177Hf (εHf=+2,165). Lu–Hf garnet-cpx-whole rock ages of two olivine-bearing samples (garnet peridotite and garnet-olivine pyroxenite) from the outcrop are ca. 1,255 Ma, whereas two olivine-free garnet pyroxenites yield Lu–Hf ages of ca. 1,185 Ma. All Sm–Nd garnet-cpx-whole rock ages of these samples are significantly younger (ca. 1,150 Ma for garnet peridotite and ca. 1,120 Ma for garnet pyroxenite). The isotope systematics indicate that the Lu–Hf ages represent cooling from an earlier period of formation/recrystallization for garnet peridotite whereas they probably reflect formation/recrystallization ages of the garnet pyroxenite. The Sm–Nd ages and isotope systematics of the garnet peridotite samples are consistent with an episode of LREE metasomatism, perhaps facilitated by a fluid of carbonatitic composition that strongly decoupled Sm–Nd and Lu–Hf. The Sm–Nd ages of the garnet pyroxenite may represent either LREE metasomatism or cooling, and, like the peridotites, Lu–Hf ages are older than Sm–Nd ages. The age data, as well as the inferred Nd isotope composition of the fluid that affected the olivine-bearing samples, suggest that these rocks were not in contact during the LREE metasomatic event. Moreover, the pyroxenite layers cannot have been emplaced as magmas into the host peridotite. The pyroxenite layers are interpreted to be tectonically juxtaposed with the host olivine-bearing samples sometime after 1,150 Ma but before development of kelyphite.  相似文献   
73.
A self-consistent calculation of the magnetic field and plasma distribution in the magnetotail has been undertaken for static conditions. We find the best agreement with experimental observations by satellite in the tail for an isotropic particle pitch angle distribution, a slow decrease of magnetic field intensity as a function of distance from the Earth |x|−0.3, and a northward field in the equatorial plane of about 1 gamma at the position of the lunar orbit. Knowing the field and plasma distribution we calculate the sources of the electrical current and find that the magnetic field in the tail can be supported entirely by solar wind drifting into the curved and diminishing magnetic field of the magnetotail. Furthermore the plasma present in the tail at any one instant is swept out in a very short time due to its large curvature drift velocity; the constant plasma sheet is maintained by constant renewal of entering solar wind plasma.  相似文献   
74.
Nanophase Fe metal grains (np-Fe°) are a product of space weathering, formed by processes related to meteorite impacts, and solar-wind sputtering on airless planetary bodies, such as the Moon. Iron isotopes of lunar soils are fractionated during these processes, and the np-Fe° in the finest (<10 μm), mature, size fractions of the soil become enriched in heavier isotopes by ∼0.3‰ in 56Fe/54Fe in comparison to the bulk rocks (0.03±0.05‰), from which the soil was formed. A positive correlation of δ56Fe values with the soil maturity index, IS/FeO, suggests that the high δ56Fe values reflect production of nanophase Fe metal that is produced by space weathering that occurs on airless planetary bodies. Furthermore, the enrichment of δ56Fe in the smallest size fraction of lunar soils supports a model for creation of np-Fe° through vapor deposition induced by micrometeorites, as well as that by solar-wind sputtering.  相似文献   
75.
Spinel peridotite xenoliths found in the Monte Vulture carbonatite-melilitite volcano have been derived from the subcontinental lithospheric mantle beneath central southern Italy. Clinopyroxene-poor lherzolites and harzburgites are the most common rock types, with subordinate wehrlites and dunites. Small quantities of phlogopite and carbonate are present in a few samples. The peridotites record a large degree of partial melting and have experienced subsequent enrichment which has increased their LILE and LREE contents, but in most cases their HFSE contents are low. Despite being carried to the surface by a carbonatite-melilitite host, the whole-rock and clinopyroxene compositions of the xenoliths have a trace-element signature more closely resembling that of silicate-melt metasomatised mantle rather than carbonatite-metasomatised peridotites. 87Sr/86Sr and 143Nd/144Nd isotopic ratios for clinopyroxene from the Vulture peridotites are 0.7042-0.7058 and 0.51260-0.5131 respectively. They form a trend away from the depleted mantle to the composition of the host magmas, and show a significant enrichment in 87Sr/86Sr compared with most European mantle samples. The mantle beneath Monte Vulture has had a complex evolution - we propose that the lithosphere had already undergone extensive partial melting before being affected by metasomatism from a silicate melt which may have been subduction-related.  相似文献   
76.
Characterization of periodic variations in the GPS satellite clocks   总被引:11,自引:7,他引:4  
The clock products of the International Global Navigation Satellite Systems (GNSS) Service (IGS) are used to characterize the timing performance of the GPS satellites. Using 5-min and 30-s observational samples and focusing only on the sub-daily regime, approximate power-law stochastic processes are found. The Block IIA Rb and Cs clocks obey predominantly random walk phase (or white frequency) noise processes. The Rb clocks are up to nearly an order of magnitude more stable and show a flicker phase noise component over intervals shorter than about 100 s. Due to the onboard Time Keeping System in the newer Block IIR and IIR-M satellites, their Rb clocks behave in a more complex way: as an apparent random walk phase process up to about 100 s and then changing to flicker phase up to a few thousand seconds. Superposed on this random background, periodic signals have been detected in all clock types at four harmonic frequencies, n × (2.0029 ± 0.0005) cycles per day (24 h coordinated universal time or UTC), for n = 1, 2, 3, and 4. The equivalent fundamental period is 11.9826 ± 0.0030 h, which surprisingly differs from the reported mean GPS orbital period of 11.9659 ± 0.0007 h by 60 ± 11 s. We cannot account for this apparent discrepancy but note that a clear relationship between the periodic signals and the orbital dynamics is evidenced for some satellites by modulations of the spectral amplitudes with eclipse season. All four harmonics are much smaller for the IIR and IIR-M satellites than for the older blocks. Awareness of the periodic variations can be used to improve the clock modeling, including for interpolation of tabulated IGS products for higher-rate GPS positioning and for predictions in real-time applications. This is especially true for high-accuracy uses, but could also benefit the standard GPS operational products. The observed stochastic properties of each satellite clock type are used to estimate the growth of interpolation and prediction errors with time interval.  相似文献   
77.
78.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   
79.
The oxygen and strontium isotope compositions of granitic rocks of the Idaho Batholith provide insight into the magma source, assimilation processes, and nature of the suture zone between the Precambrian craton and accreted arc terranes. Granitic rocks of the Idaho Batholith intrude basement rocks of different age: Triassic/Jurassic accreted terranes to the west of the Salmon River suture zone and the Precambrian craton to the east. The age difference in the host rocks is reflected in the abrupt increase in the initial 87Sr/86Sr ratios of granitic rocks in the batholith across the previously defined 0.706 line. Initial 87Sr/86Sr ratios of granitic rocks along Slate Creek on the western edge of the batholith jump from less than 0.704 to greater than 0.707 along an approximately 700 m transect normal to the Salmon River suture. Initial 87Sr/86Sr ratios along the Slate Creek transect do not identify a transition zone between accreted arcs and the craton and suggest a unique tectonic history during or after suturing that is not documented along other transects on the west side of the Idaho Batholith. The lack of transition zone along Slate Creek may be a primary structure due to transcurrent/transpressional movement rather than by contractional thrust faulting during suturing or be the result of post-imbrication modification.  相似文献   
80.
The 16-day planetary wave in the mesosphere and lower thermosphere   总被引:3,自引:0,他引:3  
A meteor radar located at Sheffield in the UK has been used to measure wind oscillations with periods in the range 10–28 days in the mesosphere/lower-thermosphere region at 53.5°N, 3.9°W from January 1990 to August 1994. The data reveal a motion field in which wave activity occurs over a range of frequencies and in episodes generally lasting for less than two months. A seasonal cycle is apparent in which the largest observed amplitudes are as high as 14 ms−1 and are observed from January to mid-April. A minimum in activity occurs in late June to early July. A second, smaller, maximum follows in late summer/autumn where amplitudes reach up to 7–10 ms−1. Considerable interannual variability is apparent but wave activity is observed in the summers of all the years examined, albeit at very small amplitudes near mid summer. This behaviour suggests that the equatorial winds in the mesopause region do not completely prevent inter-hemispheric ducting of the wave from the winter hemisphere, or that it is generated in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号