首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   4篇
测绘学   1篇
大气科学   10篇
地球物理   19篇
地质学   25篇
海洋学   28篇
天文学   40篇
综合类   1篇
自然地理   13篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   10篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   8篇
  2004年   4篇
  2003年   1篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有137条查询结果,搜索用时 31 毫秒
31.
The three-dimensional stability problem is investigated for a family of velocity and density profiles similar in form to those expected for large-amplitude internal gravity waves near a critical level. These profiles exhibit regions of high shear and stable stratification alternating with regions of weak shear and unstable stratification. Analytical solutions are given for inviscid, neutral modes that are similar to those found under neutral conditions with stable stratification. Neutral modes form closed streamline patterns centered at locations of maximal shear, and are not strongly influenced by nearby regions of unstable stratification. Unstable modes are computed numerically. It is shown that the instability mechanism for these wave-like flows fundamentally three-dimensional in character and exhibits both shear and convective dynamics. For flows with parameter values below the neutral curves, unstable modes oriented in the streamwise direction undergo shear instability, while modes oriented orthogonally are convectively unstable. In addition to their intrinsic physical relevance, the results of this study have important implications for the physics and the numerical modeling of breaking internal gravity waves. Two-dimensional models will bias the breaking dynamics by eliminating the possibility for convection oriented in the transverse plane.  相似文献   
32.
A ROBUST PLS PROCEDURE   总被引:1,自引:0,他引:1  
A robust partial least squares(PLS)regression algorithm is developed.This is achieved by substitutionof the univariate regression steps in the iterative PLS2 algorithm by a robust alternative.The anglebetween loading vectors from both perturbed and unperturbed solutions is used as a measure ofrobustness.By means of a perturbation study on a structure-activity data set,it is demonstrated thatthe stability of the robust method is superior to standard PLS.  相似文献   
33.
Analytical models for decompressional bubble growth in a viscous magma are developed to establish the influence of high magma viscosity on vesiculation and to assess the time-scales on which bubbles respond to decompression. Instantaneous decompression of individual bubbles, analogous to a sudden release of pressure (e.g. sector collapse), is considered for two end-member cases. The infinite melt model considers the growth of an isolated bubble before significant bubble interaction occurs. The shell model considers the growth of a bubble surrounded by a thin shell and is analogous to bubble growth in a highly vesicular magmatic foam. Results from the shell model show that magmas less viscous than 109 Pa s can freely expand without developing strong overpressures. The timescales for pressure re-equilibration are shortened by increased ratios of bubble radius to shell thickness and by larger decompression. Time-scales for isolated bubbles in rhyolitic melts (infinite melt model) are significantly longer, implying that such bubbles could experience internal pressures greater than the ambient pressure for at least a few hours following a sudden release of pressure. The shell model is developed to assess bubble growth during the linear decompression of a magma body of constant viscosity. For the range of decompression rates and viscosities associated with actual volcanic eruptions, bubble growth continues at approximately the equilibrium rate, with no attendant excess of internal pressure. The results imply that viscosity does not have any significant role in preventing the explosive expansion of high viscosity foams. However, for viscosities of >109 Pa s there is the potential for a viscosity quench under the extreme decompression rates of an explosive eruption. It is proposed that the typical vesicularities of pumice of 0.7–0.8 are a consequence of the viscosity of the degassing magmas becoming sufficiently high to inhibit bubble expansion over the characteristic time-scale of eruption. For fully degassed silicic lavas with viscosities in the range 1010 to 1012 Pa s time-scales for decompression of isolated bubbles can be hours to many months.  相似文献   
34.
The three dissociation constants of phosphoric acid have been determined in seawater media over the temperature and ionic strength ranges 5–30°C and 0.3-0.9 m. The results obtained fitted the equations (concentrations in mol per kg of solution):
pK1P=-75T+2.16-0.35I12 (rmsdeviation 0.034)
pK2P=737.6T++4.176-0.851I12 (rmsdeviation 0.015)
pK3P=2404T+1.31-0.87I12 (rmsdeviation 0.17)
The results are only in moderate agreement with those of Kester and Pytkowicz (1967). The reason for this lies partly in differences between the pH scales adopted and partly in the poor precision inherent in their method.  相似文献   
35.
36.
Owens  Mathew  Lang  Matthew  Barnard  Luke  Riley  Pete  Ben-Nun  Michal  Scott  Chris J.  Lockwood  Mike  Reiss  Martin A.  Arge  Charles N.  Gonzi  Siegfried 《Solar physics》2020,295(3):1-15

Solar radiation variability spans a wide range in time, ranging from seconds to decadal and longer. The nearly 40 years of measurements of solar irradiance from space established that the total solar irradiance varies by \(\approx 0.1\%\) in phase with the Sun’s magnetic cycle. Specific intervals of the solar spectrum, e.g., ultraviolet (UV), vary by orders of magnitude more. These variations can affect the Earth’s climate in a complex non-linear way. Specifically, some of the processes of interaction between solar UV radiation and the Earth’s atmosphere involve threshold processes and do not require a detailed reconstruction of the solar spectrum. For this reason a spectral UV index based on the (FUV-MUV) color has been recently introduced. This color is calculated using SORCE SOLSTICE integrated fluxes in the FUV and MUV bands. We present in this work the reconstructions of the solar (FUV-MUV) color and Ca ii K and Mg ii indices, from 1749–2015, using a semi-empirical approach based on the reconstruction of the area coverage of different solar magnetic features, i.e., sunspot, faculae and network. We remark that our results are in noteworthy agreement with latest solar UV proxy reconstructions that exploit more sophisticated techniques requiring historical full-disk observations. This makes us confident that our technique can represent an alternative approach which can complement classical solar reconstruction efforts. Moreover, this technique, based on broad-band observations, can be utilized to estimate the activity on Sun-like stars, that cannot be resolved spatially, hosting extra-solar planetary systems.

  相似文献   
37.
 An essential element in identifying sites as analogues for the long-term development of soils and vegetation on engineered landforms of the rehabilitated Ranger Uranium Mine, Northern Territory, Australia, is the need to match rocks. Comparison of the geochemistry of rocks from the waste rock dump of Ranger Uranium Mine and the potential analogue site of Tin Camp Creek area, Western Arnhem Land, indicates that there are several sites along Tin Camp Creek that may be used as analogue sites. Detailed comparisons between the Ranger and Tin Camp Creek lithologies have been undertaken using a variety of techniques, including cluster analysis. It is demonstrated that at least 70% of the rocks being mined at Ranger have analogues in the Tin Camp Creek area. Received: 2 October 1996 · Accepted: 4 November 1997  相似文献   
38.
During February 2010, studies of primary production (PP) and physiology were conducted at five selected sites in the KwaZulu-Natal (KZN) Bight of the Agulhas ecosystem as part of a programme to elucidate the influence of major physical driving forces and nutrient inputs on the structure and functioning of biological communities. These sites were located in the vicinity of the Durban lee eddy, in the midshelf region of the central part of the bight, off the Thukela Mouth, and to the north and south of Richards Bay. At four of the sites, chlorophyll a ranged from 0.10 to 1.44?mg m–3 and integrated PP ranged between 0.35 and 2.58?g C m–2 d–1. The highest biomass and PP, which were comparable to those observed in a wind-driven upwelling system, were associated with a diatom community observed at the midshelf site, and varied between 0.26 and 4.27?mg m–3 and 7.22 and 9.89?g C m–2 d–1, respectively. Environmental conditions at each of the sites differed substantially and appeared to be influential in initiating and controlling the development and distribution of phytoplankton biomass and production. Phytoplankton adaptation to variable environmental conditions was characterised by a decreased light-limited slope (αB) and increased rate of photosynthesis (Pm ) and light saturation (Ek) with elevated temperatures. The converse (increased αB and decreased Pm and Ek) was observed as irradiance levels declined. Generalised additive models indicated that irradiance, temperature and biomass were important variables influencing photosynthetic parameters and photosynthetic rates.  相似文献   
39.
The current solar cycle minimum seems to have unusual properties that appear to be related to weak solar polar magnetic fields. We investigate signatures of this unusual polar field in the ecliptic near-Earth interplanetary magnetic field (IMF) for the STEREO period of observations. Using 1 AU OMNI data, we find that for the current solar cycle declining phase to minimum period the peak of the distribution for the values of the ecliptic IMF magnitude is lower compared to a similar phase of the previous solar cycle. We investigate the sources of these weak fields. Our results suggest that they are related to the solar wind stream structure, which is enhanced by the weak polar fields. The direct role of the solar field is therefore complicated by this effect, which redistributes the solar magnetic flux at 1 AU nonuniformly at low to mid heliolatitudes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号