Based on classic iterative computation results, new equations to calculate the surface turbulent transfer coefficients are
proposed, which allow for large ratios of the momentum and heat roughness lengths. Compared to the Launiainen scheme, our
proposed scheme generates results closer to classical iterative computations. Under unstable stratification, the relative
error in the Launiainen scheme increases linearly with increasing instability, even exceeding 15%, while the relative error
of the present scheme is always less than 8.5%. Under stable stratification, the Launiainen scheme uses two equations, one
for 0 < RiB ≤ 0.08 and another for 0.08 < RiB ≤ 0.2, and does not consider the condition that RiB > 0.2, while its relative errors in the region 0 < RiB ≤ 0.2 exceed 31 and 24% for momentum and heat transfer coefficients, respectively. In contrast, the present scheme uses only
one equation for 0 < RiB ≤ 0.2 and another equation for RiB > 0.2, and the relative error of the present scheme is always less than 14%. 相似文献
The La Voluntad porphyry Cu–Mo deposit in Neuquén, Argentina, is one of several poorly known porphyry-type deposits of Paleozoic
to Early Jurassic age in the central and southern Andes. Mineralization at La Voluntad is related to a tonalite porphyry from
the Chachil Plutonic Complex that intruded metasedimentary units of the Piedra Santa Complex. Five new Re–Os molybdenite ages
from four samples representing three different vein types (i.e., quartz–molybdenite, quartz–sericite–molybdenite and quartz–sericite–molybdenite
± chalcopyrite–pyrite) are identical within error and were formed between ~312 to ~316 Ma. Rhenium and Os concentrations range
between 34 to 183 ppm and 112 to 599 ppb, respectively. The new Re–Os ages indicate that the main mineralization event at
La Voluntad, associated to sericitic alteration, was emplaced during a time span of 1.7 ± 3.2 Ma and that the deposit is Carboniferous
in age, not Permian as previously thought. La Voluntad is the oldest porphyry copper deposit so far recognized in the Andes
and indicates the presence of an active magmatic arc, with associated porphyry style mineralization, at the proto-Pacific
margin of Gondwana during the Early Pennsylvanian. 相似文献
Equilibrium models of differentially rotating nascent neutron stars are constructed, which represent the result of the accretion-induced collapse of rapidly rotating white dwarfs. The models are built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf model is constructed; (2) a stationary axisymmetric neutron star having the same total mass and angular momentum distribution as the white dwarf is constructed. The resulting collapsed objects consist of a high-density central core of size roughly 20 km, surrounded by a massive accretion torus extending over 1000 km from the rotation axis. The ratio of the rotational kinetic energy to the gravitational potential energy of these neutron stars ranges from 0.13 to 0.26, suggesting that some of these objects may have a non-axisymmetric dynamical instability that could emit a significant amount of gravitational radiation. 相似文献