首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   1篇
地球物理   2篇
海洋学   3篇
天文学   11篇
  2020年   1篇
  2010年   1篇
  2009年   1篇
  1999年   2篇
  1993年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
Auroral radar studies of ULF pulsations have proved useful in determining the spatial characteristics of resonant oscillations. A particular class of ringing or transient pulsations has been identified in the radar data as toroidal mode eigenoscillations. We have considered a total of 64 events of this type recorded by either the STARE radar in Scandinavia, or the Slope Point radar in New Zealand, giving a combined latitudinal coverage of approx. 12°. These events are interpreted as toroidal mode eigenoscillations; the periods for individual events and the mean periods increase with geomagnetic latitude. Use of hydromagnetic resonance theory allows the equatorial ion mass density to be determined. The densities obtained are appropriate to the plasmatrough and range from ~ 10 to 100 a.m.u. cm?3 near geosynchronous orbit. The radial variation in the equatorial plane is typically R?5 in the midnight-noon sector and R?3 in the noon-midnight sector. To reconcile these pulsation periods with in situ electron density measurements implies that H+ ion densities in the range ~ 1–10 cm?3 and ~50% O+ ions are required.  相似文献   
12.
Transformation of sea-surface Doppler microwave backscatter observations from the space-time domain to the wavenumber-frequency domain separates linear wave energy from nonlinear effects. Here observations and modeling are used to investigate the sources of these nonlinearities. Wave breaking and electromagnetic shadowing are examined with emphasis on their relative effects both inside and outside the region of the wavenumber-frequency spectrum associated with the linear dispersion equation. Shadowing significantly reduces the variance levels within the linear spectral region. In addition, shadowing is less directly related to changes in variance outside this region, i.e., that region associated with nonlinearity in the wave field. Wave breaking has less of an effect on the variance within the linear region than shadowing. However, the modeled wave breaking does have a greater tendency to increase variance levels at frequencies less than that of the linear wave field, for any given wavenumber. Aliasing and emphasis of crest backscatter are also explored to explain features seen in some wavenumber-frequency intensity images. Two-dimensional data allow the linear wave spectrum to be separated from nonlinear effects. This results in improved wave height spectrum estimation  相似文献   
13.
Recent analytical and numerical modelling has demonstrated the possibility that impulsively-stimulated compressional hydromagnetic cavity resonances can drive local field-line resonances in the magnetosphere. This paper extends the modelling to include axisymmetric plasmapause structures with realistic radial variation in the magnetospheric cavity. The results show that: (a) the plasmapause plays an important rôle in determining which cavity resonances are dominant; (b) when the wave fields are significantly non-axisymmetric, additional cavity resonances are evident which are at least partly trapped within the plasmasphere; (c) the position of the plasmapause determines where (and whether) cavity resonances couple significantly to field-line resonances; (d) for the small “azimuthal” wavenumber chosen, there is no evidence of a compressional surface wave on the plasmapause.  相似文献   
14.
VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O+ and H+ ions along dipole magnetic field lines, and including radial Ez × B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about ± 20 ms?1 (~10–15%), and the two hemisphere ionosphere-protonosphere coupling fluxes to about ± 1012 m?2 s?1 (~40%).  相似文献   
15.
Solute transport in undisturbed soil is a complex process and detailed information on the transport characteristics is needed to provide fundamental understanding of the processes involved. X‐ray computer tomography (CT) and electrical resistivity tomography (ERT) have been used to gain information on the transport characteristics. Both methods are non‐intrusive and do not disturb the soil, in contrast to other methods. CT provides high resolution information on bulk density and macropores, while ERT provides a three‐dimensional image of the internal resistivity structure. By adding a suitable solute under steady‐state flow, the internal resistivity changes can be interpreted as a change in resident concentrations. In our experiment two cores from different field sites were investigated. The ERT measurements revealed two transport modes (one fast and one slow) in one of the cores and only one mode in the other. This was consistent with the results of transfer function modelling on the independently measured breakthrough curves (BTCs). The fast transport mode is perhaps a result of many connected macropores, detected by CT, but this could not be verified with the ERT measurements because of the coarser resolution. However, with ERT in both cases we were able to explain the observed BTC qualitatively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
16.
The observation of radio meteors is an important technique providing information on the neutral atmosphere in the height range 80–110 km. Reliable interpretations of such observations require a knowledge of the process of radio-wave reflection from meteoric ionization. It is shown that recent theoretical results modify the interpretations based on approximate scattering models whose use may result in serious errors in the values of such parameters as ambipolar diffusion coefficients, diffusion scale heights, neutral atmosphere wind velocities and associated wind shears.  相似文献   
17.
Magnetometer studies of the periods of mid-latitude ULF pulsations have produced conflicting results on the variation of the pulsation periods with both latitude and local time. Since the mid-latitude geomagnetic field is not expected to be significantly distorted by the solar wind, the observed diurnal period variations should be determined by changes in the ambient plasma density. We have applied a physically realistic plasmasphere model to the determination of pulsation eigenperiods over a 24-h interval at L=2.3 (appropriate to Wellington, New Zealand). The resulting model pulsation eigenperiods are largest during the day, with minimum and maximum values at 05.00 and 18.00 L.T. respectively. The model predicts a general increase in the eigenperiods during the replenishment of the protonosphere after a period of geomagnetic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号