首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1895篇
  免费   87篇
  国内免费   19篇
测绘学   38篇
大气科学   139篇
地球物理   434篇
地质学   751篇
海洋学   173篇
天文学   309篇
综合类   5篇
自然地理   152篇
  2021年   23篇
  2020年   20篇
  2019年   41篇
  2018年   45篇
  2017年   49篇
  2016年   48篇
  2015年   53篇
  2014年   64篇
  2013年   103篇
  2012年   68篇
  2011年   88篇
  2010年   78篇
  2009年   105篇
  2008年   85篇
  2007年   77篇
  2006年   81篇
  2005年   70篇
  2004年   77篇
  2003年   60篇
  2002年   56篇
  2001年   42篇
  2000年   31篇
  1999年   31篇
  1998年   26篇
  1997年   22篇
  1996年   23篇
  1995年   24篇
  1994年   15篇
  1993年   18篇
  1992年   24篇
  1991年   12篇
  1990年   12篇
  1989年   25篇
  1988年   13篇
  1987年   15篇
  1986年   11篇
  1985年   20篇
  1984年   21篇
  1983年   35篇
  1982年   21篇
  1981年   28篇
  1980年   12篇
  1979年   13篇
  1978年   21篇
  1977年   12篇
  1976年   13篇
  1975年   16篇
  1974年   11篇
  1971年   11篇
  1969年   12篇
排序方式: 共有2001条查询结果,搜索用时 15 毫秒
921.
The hydrological role of a headwater swamp in a tropical rainforest is studied using chloride mass balance (CMB) and end‐member mixing analysis. There are three main contributions to streamflow: (1) the hillside bedrock aquifer, (2) overland flow from the swamp during storm events and (3) groundwater flow from the swamp aquifer. Before rainfall events of the wet season, the pre‐event water comprises a mix of 80% of bedrock aquifer and 20% of swamp aquifer. During storms, the relative contribution of overland flow increases according to the rainfall intensity and the initial saturation rate of the pre‐event water reservoirs. The yearly contribution of overland flow from the swamp to the stream is about 31%. The relationship between the swamp and the stream fluctuates with space and time. Generally, the swamp is drained by the stream; however, at the end of long dry seasons, after the first rains, indirect recharge occurs from the stream to the swamp with a hydraulic gradient inversion in the swamp aquifer. The net contribution of the swamp aquifer to the stream is only 4%, which is much lower than the hillside aquifer contribution of about 65%. Recharge on the swamp being very low, these results suggest that, except for a few storms at the end of the dry season, the Nsimi swamp does not contribute to flood attenuation. Evapotranspiration is higher on the hillside than in the swamp. Nevertheless, depletion of water stored within the swamp is dominated by evaporation rather than by its contribution to streamflow. The export of solutes through swamp groundwater flow below the weir is low (<7%). Nevertheless, the swamp is the most active area of weathering in the watershed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
922.
Recent measurements of the high-energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) have been analyzed in the range from 7 to 28 Jupiter radii. 10-min averages of these data between Jupiter orbit insertion in 1995 to the end of the mission have been analyzed to provide estimates of the electron differential fluxes at 1.5, 2, and 11 MeV in the jovian equatorial plane as a function of radial distance. These data provide a long term picture of the variations in the high-energy electron environment over the ∼8 years of the Galileo mission. This paper reviews those measurements and the statistics associated with them for the 8 year period. In general, the data variations are well behaved with variations being within a factor of ∼2 of a median value at a given distance from Jupiter. These results are analyzed in detail and the orbit variations discussed in the context of the overall data set. The results of this analysis of the long-term statistical variations in high-energy electron fluxes are directly applicable to models that estimate the effects of the radiation environment on Jupiter's moons and their atmospheres as they permit estimates of the possible range of radiation effects that might be expected.  相似文献   
923.
Analyses of organochlorine pesticides in South African marine animals living far from any obvious source of contamination reveal surprisingly high values.  相似文献   
924.
925.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
926.
927.
Abstract— The thermal metamorphism grade of organic matter (OM) trapped in 6 unequilibrated ordinary chondrites (UOCs) (Semarkona [LL 3.0], Bishunpur [L/LL 3.1], Krymka [LL 3.1], Chainpur [LL 3.4], Inman [L/LL 3.4], and Tieschitz [H/L 3.6]) has been investigated with Raman spectroscopy in the region of the first‐order carbon bands. The carbonaceous chondrite Renazzo (CR2) was also investigated and used as a reference object for comparison, owing to the fact that previous studies pointed to the OM in this meteorite as being the most pristine among all chondrites. The results show that the OM thermal metamorphic grade: 1) follows the hierarchy Renazzo << Semarkona << other UOCs; 2) is well correlated to the petrographic type of the studied objects; and 3) is also well correlated with the isotopic enrichment δ15N. These results are strikingly consistent with earlier cosmochemical studies, in particular, the scenario proposed by Alexander et al. (1998). Thermal metamorphism in the parent body appears as the main evolution process of OM in UOCs, demonstrating that nebular heating was extremely weak and that OM burial results in the destabilization of an initial isotopic composition with high δD and δ15N. Furthermore, the clear discrimination between Renazzo, Semarkona, and other UOCs shows: 1) Semarkona is a very peculiar UOC—by far the most pristine; and 2) Raman spectroscopy is a valid and valuable tool for deriving petrographic sub‐types (especially the low ones) that should be used in the future to complement current techniques. We compare our results with other current techniques, namely, induced thermo‐luminescence and opaques petrography. Other results have been obtained. First, humic coals are not strictly valid standard materials for meteoritic OM but are helpful in the study of evolutionary trends due to thermal metamorphism. Second, terrestrial weathering has a huge effect on OM structure, particularly in Inman, which is a find. Finally, the earlier statement that fine‐grained chondrule rims and matrix in Semarkona could be the source of smectite‐rich IDPs is not valid, given the different degree of structural order of their OM.  相似文献   
928.
929.
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号