首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   14篇
  国内免费   11篇
测绘学   9篇
大气科学   43篇
地球物理   106篇
地质学   214篇
海洋学   42篇
天文学   152篇
自然地理   67篇
  2023年   4篇
  2021年   8篇
  2020年   8篇
  2019年   14篇
  2018年   12篇
  2017年   11篇
  2016年   22篇
  2015年   15篇
  2014年   15篇
  2013年   27篇
  2012年   25篇
  2011年   31篇
  2010年   18篇
  2009年   37篇
  2008年   48篇
  2007年   37篇
  2006年   36篇
  2005年   17篇
  2004年   27篇
  2003年   16篇
  2002年   16篇
  2001年   15篇
  2000年   15篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1994年   15篇
  1993年   3篇
  1992年   9篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   12篇
  1983年   8篇
  1981年   5篇
  1980年   4篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1966年   2篇
排序方式: 共有633条查询结果,搜索用时 15 毫秒
51.
Within the German Tropospheric Research Programme (TFS) numerous kinetic and mechanistic studies on the tropospheric reaction/degradation of the following reactants were carried out: oxygenated VOC, aromatic VOC, biogenic VOC, short-lived intermediates, such as alkoxy and alkylperoxy radicals.At the conception of the projects these selected groups were classes of VOC or intermediates for which the atmospheric oxidation mechanisms were either poorly characterised or totally unknown. The motivation for these studies was the attainment of significant improvements in our understanding of the atmospheric chemical oxidation processes of these compounds, particularly with respect to their involvement in photooxidant formation in the troposphere. In the present paper the types of experimental investigations performed and the results obtained within the various projects are briefly summarised. The major achievements are highlighted and discussed in terms of their contribution to improving our understanding of the chemical processes controlling photosmog formation in the troposphere.  相似文献   
52.
53.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   
54.
Acquiring a mechanistic understanding of the role of biotic feedbacks for the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer-based simulations are the only available tool to estimate the global impact of biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approach by using materially closed, energetically open analogue/physical models of the carbon cycle. We argue that there is unexplored potential in using a materially closed approach to improve our understanding of the magnitude and direction of many biotic carbon feedbacks and that recent technological advances make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle.  相似文献   
55.
This paper investigates how using different regional climate model (RCM) simulations affects climate change impacts on hydrology in northern Europe using an offline hydrological model. Climate change scenarios from an ensemble of seven RCMs, two global climate models (GCMs), two global emissions scenarios and two RCMs of varying resolution were used. A total of 15 climate change simulations were included in studies on the Lule River basin in Northern Sweden. Two different approaches to transfer climate change from the RCMs to hydrological models were tested. A rudimentary estimate of change in hydropower potential on the Lule River due to climate change was also made. The results indicate an overall increase in river flow, earlier spring peak flows and an increase in hydropower potential. The two approaches for transferring the signal of climate change to the hydrological impacts model gave similar mean results, but considerably different seasonal dynamics, a result that is highly relevant for other types of climate change impacts studies.  相似文献   
56.
A systematic analysis of the winter North Atlantic eddy-driven jet stream latitude and wind speed from 52 model integrations, taken from the coupled model intercomparison project phase 3, is carried out and compared to results obtained from the ERA-40 reanalyses. We consider here a control simulation, twentieth century simulation, and two time periods (2046–2065 and 2081–2100) from a twenty-first century, high-emission A2 forced simulation. The jet wind speed seasonality is found to be similar between the twentieth century simulations and the ERA-40 reanalyses and also between the control and forced simulations although nearly half of the models overestimate the amplitude of the seasonal cycle. A systematic equatorward bias of the models jet latitude seasonality, by up to 7°, is observed, and models additionally overestimate the seasonal cycle of jet latitude about the mean, with the majority of the models showing equatorward and poleward biases during the cold and warm seasons respectively. A main finding of this work is that no GCM under any forcing scenario considered here is able to simulate the trimodal behaviour of the observed jet latitude distribution. The models suffer from serious problems in the structure of jet variability, rather than just quantitiative errors in the statistical moments.  相似文献   
57.
58.
Changes in streamflow and water table elevation influence oxidation–reduction (redox) conditions near river–aquifer interfaces, with potentially important consequences for solute fluxes and biogeochemical reaction rates. Although continuous measurements of groundwater chemistry can be arduous, in situ sensors reveal chemistry dynamics across a wide range of timescales. We monitored redox potential in an aquifer adjacent to a tidal river and used spectral and wavelet analyses to link redox responses to hydrologic perturbations within the bed and banks. Storms perturb redox potential within both the bed and banks over timescales of days to weeks. Tides drive semidiurnal oscillations in redox potential within the streambed that are absent in the banks. Wavelet analysis shows that tidal redox oscillations in the bed are greatest during late summer (wavelet magnitude of 5.62 mV) when river stage fluctuations are on the order of 70 cm and microbial activity is relatively high. Tidal redox oscillations diminish during the winter (wavelet magnitude of 2.73 mV) when river stage fluctuations are smaller (on the order of 50 cm) and microbial activity is presumably low. Although traditional geochemical observations are often limited to summer baseflow conditions, in situ redox sensing provides continuous, high‐resolution chemical characterization of the subsurface, revealing transport and reaction processes across spatial and temporal scales in aquifers.  相似文献   
59.
In airborne gravity gradiometry, the Gravity Module Assembly is an optional gravimeter unit that is mounted on the same stabilized platform as the Full Tensor Gradiometer. Direct measurements of the gravity field are needed from this device to constrain the long wavelengths when gradient data are integrated mathematically to form high-resolution gravity fields. The Gravity Module Assembly is, however, capable of providing independent gravity data with a specification approaching that expected from a dedicated airborne gravity system. Presented here is an error analysis of data from this instrument collected alongside the Full Tensor Gradiometer during an airborne survey. By having both gradiometry and gravity datasets, comparisons of the information content in these two types of measurement are made.  相似文献   
60.
Phil Dyke 《Ocean Dynamics》2007,57(4-5):239-244
This is a history of shallow sea modelling developments as viewed through the Jonsmod modelling conferences over the past 25 years. The conferences are reviewed, and what emerges is a coherent progression to present-day modelling. We also see advances in computing and oceanographic observation, although these are, of course, incidental to the modelling from the point of view of these conferences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号