首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   2篇
测绘学   3篇
大气科学   6篇
地球物理   35篇
地质学   38篇
海洋学   23篇
天文学   6篇
自然地理   10篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   11篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
61.
The effect of the formation of a major subglacial drainage channel on the behaviour of the subglacial drainage system of Haut Glacier d'Arolla, Switzerland, was investigated using measurements of borehole water level and the electrical conductivity and turbidity of basal meltwaters. Electrical conductivity profiles were also measured within borehole water columns to identify the water sources driving water level changes, and to determine patterns of water circulation in boreholes. Prior to channel formation, boreholes showed idiosyncratic and poorly coordinated behaviour. Diurnal water level fluctuations were small and driven by supraglacial/englacial water inputs, even when boreholes were connected to a subglacial drainage system. This system appeared to consist of hydraulically impermeable patches interspersed with storage spaces, and transmitted a very low water flux. Drainage reorganization, which occurred around 31 July, 1993, in response to rapidly rising meltwater and rainfall inputs, seems to have involved the creation of a connection between an incipient channel and a well-established channelized system located further down-glacier. Once a major channel existed within the area of the borehole array, borehole water level fluctuations were forced by discharge-related changes in channel water pressure, although a diversity of responses was observed. These included (i) synchronous, (ii) damped and lagged, (iii) inverse, and (iv) alternating inverse/lagged responses. Synchronous responses occurred in boreholes connected directly to the channel, while damped and lagged responses occurred in boreholes connected to it by a more resistive drainage system. Pressure variations within the channel resulted in diurnal transfer of mechanical support for the ice overburden between connected and unconnected areas of the bed, producing inverse and alternating patterns of water level response. © 1998 John Wiley & Sons, Ltd.  相似文献   
62.
The aim of this study was to investigate temporal trends and controlling factors of As and V in running waters throughout Sweden. For this purpose, data on stream water chemistry from 62 streams of varying catchment size and characteristics, included in the Swedish environmental monitoring programmes were evaluated. The geochemical software Visual MINTEQ was used to model the speciation and trend analyses were performed on total concentrations of As and V as well as modelled fractions (dissolved species as well as arsenate and vanadate adsorbed to ferrihydrite). The trend analyses showed increasing total concentrations of As and V in southern Sweden. Concentrations of As and V correlated significantly to Fe concentrations in 59 and 60 of the 62 streams respectively, indicating that Fe is an important determining factor for As and V concentrations in Swedish streams. This was confirmed by the geochemical modelling that indicated that the adsorbed fraction is the dominant form of As and V and that the concentrations of As and V in Swedish streams are thus highly determined by concentrations of colloidal or particulate Fe. It is therefore suggested that the increasing trends of As and V are to a large extent due to increasing concentrations of colloidal Fe, which is stabilised by increasing concentrations of DOC. Further the geochemical modelling indicates that the dissolved fraction of As and V generally is small, with the exception of a few streams with high pH and/or phosphate concentrations.  相似文献   
63.
64.
Unknown values of a random field can be predicted from observed data using kriging. As data sets grow in size, the computation times become large. To facilitate kriging with large data sets, an approximation where the kriging is performed in sub-segments with common data neighborhoods has been developed. It is shown how the accuracy of the approximation can be controlled by increasing the common data neighborhood. For four different variograms, it is shown how large the data neighborhoods must be to get an accuracy below a chosen threshold, and how much faster these calculations are compared to the kriging where all data are used. Provided that variogram ranges are small compared to the domain of interest, kriging with common data neighborhoods provides excellent speed-ups (2–40) while maintaining high numerical accuracy. Results are presented both for data neighborhoods where the neighborhoods are the same for all sub-segments, and data neighborhoods where the neighborhoods are adapted to fit the data densities around the sub-segments. Kriging in sub-segments with common data neighborhoods is well suited for parallelization and the speed-up is almost linear in the number of threads. A comparison is made to the widely used moving neighborhood approach. It is demonstrated that the accuracy of the moving neighborhood approach can be poor and that computational speed can be slow compared to kriging with common data neighborhoods.  相似文献   
65.
Sediment supply: The main driver of shelf-margin growth   总被引:1,自引:0,他引:1  
Despite the obvious importance of sediment supply to shelf-margin architecture and to the potential of margins to contain and bypass deep-water sands, the role of supply in shelf-margin growth has received limited attention. High cross-shelf sediment flux is critically important for the occurrence of deep-water sands, not least on Greenhouse or rapidly subsiding margins where the impact of eustatic sea-level fall may be insufficient to drive sediment delivery out across the shelf into deep-water areas. To draw greater attention to the supply parameter we review a number of shelf margins that have grown chiefly through supply by shelf-edge deltas and associated sediment-gravity flows. Based on structural style and water depth, we recognize two broad types of shelf-margin. Moderately deep-water margins produce clinoforms < 1000 m high and show rates of shelf-edge progradation < 60 km/My and aggradation < 270 m/My, and consequently, infill their basins relatively rapidly, and develop more progradational architectures with morphologically smooth and relatively undeformed slopes. Very deep-water margins produce clinoforms > 1000 m high and generally show rates of shelf-edge progradation < 40 km/My and aggradation < 2500 m/My, and therefore infill their basins more slowly and develop more aggradational architectures with much gravity-driven slope deformation, proneness to failure and ponded architectures (salt or shale driven). On both margin types, long-term (> 1 My) rates of shelf-edge progradation of several tens of km/My tend to be linked to the delivery of relatively large volumes of sand into the deep-water basin. Delivery of this sand beyond the shelf-edge happens despite Greenhouse conditions and is likely recurrent and periodic (delivery cycles in the order of 100′s ky). Such prominent margin growth is a strong indication that sediment influx was relatively high and we refer to these margins as “supply-dominated” shelf margins. The Gulf of Mexico margin is a well-known and data-rich example of a “supply-dominated” shelf-margin during certain times (e.g., Paleocene). In contrast, on both margin types, low rates of shelf-edge progradation are linked to diminished (or even non-existent) and less frequently recurrent deep-water sediment delivery suggestive of relatively low sediment influx. Occurrence of deep-water sand delivery under low sediment influx probably requires fall of relative sea level. The differences between rapidly and slowly prograding margins indicate that sediment supply (and not sea level) is likely to be the key limiting factor on the growth of shelf margins and that sediment supply, as interpreted through progradation rate, can therefore be used to make a first-order prediction of relative amounts of sand passed to deep-water areas.  相似文献   
66.
We consider results from two 27-year-long simulation pairs derived using two different ocean models. We focus on the Skagerrak/North Sea area. Each pair consists of the two terrain-following coordinate models ROMS and MIPOM. The first pair utilizes an eddy-permitting grid, that is, a grid in which the Rossby radius is barely resolved. The second pair utilizes an eddy-resolving grid in which the Rossby radius is truly resolved. The goal is to compare the quality of the two models and the two pairs. To this end we derive statistical properties such as probability density functions and compare them with similar statistics derived from observations. Thereby we obtain insight into whether a truly eddy-resolving model is required to realistically capture the mesoscale statistics. We find that eddy resolution is critical to get the mesoscale statistics correct, in particular, the strength of the current jets. Our results also indicate that the improvement gained by employing the eddy-resolving grid is mostly due to a better resolved topography. In particular, we find that this is the case in areas exhibiting prominent topographic features, such as the deep Norwegian Trench cutting into the heart of the northern North Sea/Skagerrak area. The results also highlight the advantage of first performing quality assurance investigations when implementing a new model for a new area.  相似文献   
67.
Sonar performance modeling is crucial for submarine and anti–submarine operations. The validity of sonar performance models is generally limited by environmental uncertainty, and particularly uncertainty in the vertical sound speed profile (SSP). Rapid environmental assessment (REA) products, such as oceanographic surveys and ocean models may be used to reduce this uncertainty prior to sonar operations. Empirical orthogonal functions (EOF) applied on the SSPs inherently take into account the vertical gradients and therefore the acoustic properties. We present a method that employs EOFs and a grouping algorithm to divide a large group of SSPs from an ocean model simulation into smaller groups with similar SSP characteristics. Such groups are henceforth called acoustically stable groups. Each group represents a subset in space and time within the ocean model domain. Regions with low acoustic variability contain large and geographically contiguous acoustically stable groups. In contrast, small or fragmented acoustically stable groups are found in regions with high acoustic variability. The main output is a map of the group distribution. This is a REA product in itself, but the map may also be used as a planning aid for REA survey missions.  相似文献   
68.
Geotechnical and Geological Engineering - Clean drinking water is a necessity and recycling stormwater and greywater has been more appealing in the recent decades to provide filtered water for...  相似文献   
69.
Existing models of post-fire erosion have focused primarily on using empirical or deterministic approaches to predict the magnitude of response from catchments given some initial rainfall and burn conditions. These models are concerned with reducing uncertainties associated with hydro-geomorphic transfer processes and typically operate at event timescales. There have been relatively few attempts at modelling the stochastic interplay between fire disturbance and rainfall as factors which determine the frequency and severity with which catchments are conditioned (or primed) for a hazardous event. This process is sensitive to non-stationarity in fire and rainfall regime parameters and therefore suitable for evaluating the effects of climate change and strategic fire management on hydro-geomorphic hazards from burnt areas. In this paper we ask the question, “What is the first-order effect of climate change on the interaction between fire disturbance and storms?” The aim is to isolate the effects of fire and rainfall regimes on the frequency of extreme erosion events. Fire disturbance and storms are represented as independent stochastic processes with properties of spatial extent, temporal duration, and frequency of occurrence, and used in a germ–grain model to quantify the annual area affected by extreme erosion events due to the intersection of fire disturbance and storms. The model indicates that the frequency of extreme erosion events will increase as a result of climate change, although regions with frequent storms were most sensitive.  相似文献   
70.
Moraines that dam proglacial lakes pose an increasing hazard to communities in the Andes and other mountain ranges. The moraines are prone to failure through collapse, overtopping by lake waters or the effect of displacement waves resulting from ice and rock avalanches. Resulting floods have led to the loss of thousands of lives in the Cordillera Blanca mountains of Peru alone in the last 100 years. On 22 April 2002 a rock avalanche occurred immediately to the south‐west of Laguna Safuna Alta, in the Cordillera Blanca. The geomorphic evidence for the nature, magnitude and consequences of this event was investigated in August 2002. Field mapping indicated that the avalanche deposited 8–20 × 106 m3 of rock into the lake and onto the surface of the frontal region of Glaciar Pucajirca, which flows into the lake. Repeated bathymetric surveying indicated that ~5 × 106 m3 of this material was deposited directly into the lake. The immediate effect of this event was to create a displacement wave that gained in height as it travelled along the lake basin, overtopping the impounding moraine at the lake's northern end. To achieve overtopping, the maximum wave height must have been greater than 100 m. This, and subsequent seiche waves, caused extensive erosion of both the proximal and distal faces of the impounding terminal moraine. Further deep gullying of the distal face of this moraine resulted from the supply of pressurized water to the face via a relief overflow tunnel constructed in 1978. Two‐dimensional, steady‐state analysis of the stability of the post‐avalanche moraine rampart indicates that its proximal face remains susceptible to major large‐scale rotational failure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号