首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   11篇
  国内免费   2篇
测绘学   17篇
大气科学   19篇
地球物理   65篇
地质学   141篇
海洋学   69篇
天文学   82篇
综合类   1篇
自然地理   30篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   8篇
  2017年   10篇
  2016年   10篇
  2015年   4篇
  2014年   4篇
  2013年   22篇
  2012年   27篇
  2011年   18篇
  2010年   21篇
  2009年   24篇
  2008年   26篇
  2007年   23篇
  2006年   28篇
  2005年   12篇
  2004年   14篇
  2003年   5篇
  2002年   20篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   7篇
  1997年   9篇
  1996年   10篇
  1995年   5篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   2篇
  1970年   2篇
  1956年   1篇
  1935年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
21.
Permian deep‐water mudstones in the Tanqua Basin, South Africa, have been studied using geochemical and spectral gamma ray techniques. The mudstones occur as thick sequences between sand‐rich submarine fans, but also occur as thinner mud‐rich units within each fan. The interfan mudstones are interpreted to have accumulated during transgression and the consequent period of relatively high sea‐level, while the submarine fans and their intrafan mudstones were deposited during regression and relatively low sea‐level. Geochemical analyses revealed systematic differences between interfan and intrafan mudstones because the two types of mudstones have slightly different source lithologies. Differences between the two types of mudstone suggest that changes in relative sea‐level played a role in controlling exposure of sediment source areas. There are geochemical signals that display systematic stratigraphic trends within both interfan and intrafan mudstones. These are best explained by gradual denudation, exposure and weathering of different lithologies within a single sediment source area. Both interfan and intrafan mudstones have uniform geochemical signals along the flow direction except for the relative amount of uranium. It is most likely that the basinward increase in uranium in the mudstones is the result of reduced clastic dilution of uranium‐bearing pelagic fallout.  相似文献   
22.
During an almost three months long expedition in the Arctic Ocean, the Beringia 2005, dissolved gaseous mercury (DGM) was measured continuously in the surface water. The DGM concentration was measured using an equilibrium system, i.e. the DGM in the water phase equilibrated with a stream of gas and the gas was thereafter analysed with respect to its mercury content. The DGM concentrations were calculated using the following equation, DGM = Hgeq / kH' where Hgeq is the equilibrated concentration of elemental mercury in the gas phase and kH' is the dimensionless Henry's law constant at desired temperature and salinity. During the expedition several features were observed. For example, enhanced DGM concentration was measured underneath the ice which may indicate that the sea ice acted as a barrier for evasion of mercury from the Arctic Ocean to the atmosphere. Furthermore, elevated DGM concentrations were observed in water that might have originated from river discharge. The gas-exchange of mercury between the ocean and the atmosphere was calculated in the open water and both deposition and evasion were observed. The measurements showed significantly enhanced DGM concentrations, compared to more southern latitudes.  相似文献   
23.
Simulation of nonlinear wave run-up with a high-order Boussinesq model   总被引:2,自引:0,他引:2  
This paper considers the numerical simulation of nonlinear wave run-up within a highly accurate Boussinesq-type model. Moving wet–dry boundary algorithms based on so-called extrapolating boundary techniques are utilized, and a new variant of this approach is proposed in two horizontal dimensions. As validation, computed results involving the nonlinear run-up of periodic as well as transient waves on a sloping beach are considered in a single horizontal dimension, demonstrating excellent agreement with analytical solutions for both the free surface and horizontal velocity. In two horizontal dimensions cases involving long wave resonance in a parabolic basin, solitary wave evolution in a triangular channel, and solitary wave run-up on a circular conical island are considered. In each case the computed results compare well against available analytical solutions or experimental measurements. The ability to accurately simulate a moving wet–dry boundary is of considerable practical importance within coastal engineering, and the extension described in this work significantly improves the nearshore versatility of the present high-order Boussinesq approach.  相似文献   
24.
Changes in rainfall pattern have been suggested as a mechanism for the landward incursion of mangrove into salt marsh. The aim of the research was to assess the relationship between rainfall patterns and the spatial distribution of mangrove forests at study sites in Moreton Bay, Southeast Queensland, Australia, over a 32-year period from 1972 to 2004. To identify periods of relatively consistent rainfall patterns points at which rainfall patterns changed (change-points) were identified using the non-parametric Pettitt–Mann–Whitney-Statistic and the cumulative sum technique. The change-points were then used to define the temporal periods over which changes to mangrove area were assessed. Both mangrove and salt marsh area were measured by digitizing aerial photographs acquired in 1972, 1990 (the year with the most significant change-point), and 2004. The rates of change in mangrove area pre-1990 (a wetter period) and post-1990 (a drier period) were estimated. A significant positive relationship was demonstrated between rainfall variables and landward mangrove expansion, but not for seaward expansion. We concluded that rainfall variability is one of the principal factors influencing the rate of upslope encroachment of mangrove. However, the rate of expansion may vary from site to site due to site-specific geomorphological and hydrological characteristics and the level of disturbance in the catchment.  相似文献   
25.
The highly accurate Boussinesq-type equations of Madsen et al. (Madsen, P.A., Bingham, H.B., Schäffer, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis. Proc. R. Soc. Lond. A 459, 1075–1104; Madsen, P.A., Fuhrman, D.R., Wang, B., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504); Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945) are re-derived in a more general framework which establishes the correct relationship between the model in a velocity formulation and a velocity potential formulation. Although most work with this model has used the velocity formulation, the potential formulation is of interest because it reduces the computational effort by approximately a factor of two and facilitates a coupling to other potential flow solvers. A new shoaling enhancement operator is introduced to derive new models (in both formulations) with a velocity profile which is always consistent with the kinematic bottom boundary condition. The true behaviour of the velocity potential formulation with respect to linear shoaling is given for the first time, correcting errors made by Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position zˆ. For practical implementation however, the solution is expanded based on a slow variation of zˆ and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators satisfy a potential flow and/or conserve mass up to the order of truncation of the model. The performance of the new formulation is validated using computations of linear and nonlinear shoaling problems. The behaviour on a rapidly varying bathymetry is also checked using linear wave reflection from a shelf and Bragg scattering from an undulating bottom. Although the new models perform equally well for Bragg scattering they fail earlier than the existing model for reflection/transmission problems in very deep water.  相似文献   
26.
In this work we extend a high-order Boussinesq-type (finite difference) model, capable of simulating waves out to wavenumber times depth kh < 25, to include a moving sea-bed, for the simulation of earthquake- and landslide-induced tsunamis. The extension is straight forward, requiring only an additional term within the kinematic bottom condition. As first test cases we simulate linear and nonlinear surface waves generated from both positive and negative impulsive bottom movements. The computed results compare well against earlier theoretical, numerical, and experimental values. Additionally, we show that the long-time (fully nonlinear) evolution of waves resulting from an upthrusted bottom can eventually result in true solitary waves, consistent with theoretical predictions. It is stressed, however, that the nonlinearity used far exceeds that typical of geophysical tsunamis in the open ocean. The Boussinesq-type model is then used to simulate numerous tsunami-type events generated from submerged landslides, in both one and two horizontal dimensions. The results again compare well against previous experiments and/or numerical simulations. The new extension compliments recently developed run-up capabilities within this approach, and as demonstrated, the model can therefore treat tsunami events from their initial generation, through their later propagation, and final run-up phases. The developed model is shown to maintain reasonable computational efficiency, and is therefore attractive for the simulation of such events, especially in cases where dispersion is important.  相似文献   
27.
28.
29.
The maximum flotation response for three naturally occurring calcium minerals, apatite, calcite and fluorite with sodium oleate collector correlated directly with the minimum interfacial tension of the air/solution interface. For fluorite and apatite the minimum surface tension occurred about the mid-pH region and was attributed to the formation of pre-micellar associated species in solution. In the case of calcite the minimum was observed at high pH since the presence of high concentrations of calcium ions in solution appeared to reduce the concentration of amphililic species in the low and mid-pH regions.Microelectrophoresis data demonstrated that the three minerals acquired a negative charge in sodium oleate solution, resulting from adsorption of oleate species on the mineral surfaces.The flotation behaviour of the systems were shown to be related to the species distribution diagrams suggesting that the role of the acid soap dimer, soap dimer, molecular and lattice species could make a significant contribution to the character and composition of the interfacial films.High flotation response was explained by strong adhesion between the hydrophobic particle and bubble. It was suggested that the reduction in surface tension may not be the major factor contributing to the flotation efficiency but indicated the presence of associated surfactant species in solution which could also synergistically adsorb at the solid/liquid interface, increasing the hydrophobic character of the mineral surface. This would maximize the magnitude of the contact angle and hence the strength of the adhesion between particle and bubble. This adsorption behaviour is not in general agreement with conventionally non-hydrolyzable collector theory which is usually based on electrostatic models.  相似文献   
30.
Analysis of experimental data reported by Lagache (1965, 1976), Evans (1965), Busenberg (1975), Busenberg and Clemency (1976), Holdren and Berner (1979), Siegel and Pfannkuch (1984), and Chou and Wollast (1984) with the aid of irreversible thermodynamics and transition state theory (Aagaard and Helgeson, 1977, 1982) suggests that at temperatures at least up to 650°C, the rate of both congruent and incongruent feldspar hydrolysis in aqueous solutions far from equilibrium at pH ? 10.6 ? (2300/T), where T stands for temperature in kelvins, is a function solely of effective surface area and pH at constant pressure and temperature. At higher pH, the rate is apparently pH-independent up to ~pH 8 at 25°C, where it again becomes pH-dependent at higher pH. Observations of scanning electron micrographs indicate that the cross-sectional area of etch pits on hydrolyzed feldspar grains is of the order of 10?9 to 10?8 cm2 and that the ratio of the effective to total surface area (which may or may not change with reaction progress) ranges from <0.01 to 1, depending on the grain size, dislocation density, and the extent of comminution damage on the surfaces of the grains. Apparent rate constants retrieved from experimental data reported in the literature for feldspar hydrolysis in the lower pH-dependent range extend from ~10?13 to ~10?7 moles cm?2 sec?1 at temperatures from 25° to 200°C, which is consistent with activation enthalpies for albite and adularia of the order of 20 kcal mole?1. In contrast, the apparent rate constants for the pH-independent rate law range from ~10?16 to ~10?11 moles cm?2 sec?1 at temperatures from 25° to 650°C, which requires an activation enthalpy for adularia of ~ 9 kcal mole?1. These observations are consistent with surface control of reaction rates among minerals and aqueous solutions. The rate-limiting step in the pH-dependent case apparently corresponds at the lower end of the pH scale to breakdown of a protonated configuration of atoms on the surface of the reactant feldspar, but at higher pH the rate is limited by decomposition of an activated surface complex corresponding in stoichiometry to hydrous feldspar. In highly alkaline solutions, an activated complex containing hydroxyl ions apparently controls the rate of feldspar hydrolysis. Nevertheless, near equilibrium, regardless of pH the rate is proportional to the chemical affinity of the overall hydrolysis reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号