首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   26篇
  国内免费   7篇
测绘学   17篇
大气科学   22篇
地球物理   135篇
地质学   130篇
海洋学   12篇
天文学   116篇
综合类   7篇
自然地理   14篇
  2022年   1篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   20篇
  2017年   16篇
  2016年   22篇
  2015年   28篇
  2014年   29篇
  2013年   22篇
  2012年   20篇
  2011年   31篇
  2010年   18篇
  2009年   22篇
  2008年   15篇
  2007年   21篇
  2006年   14篇
  2005年   11篇
  2004年   10篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   10篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   9篇
  1988年   1篇
  1987年   10篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有453条查询结果,搜索用时 218 毫秒
331.
Jiang  Jiamin  Tomin  Pavel  Zhou  Yifan 《Computational Geosciences》2021,25(5):1709-1730
Computational Geosciences - The sequential fully implicit (SFI) scheme was introduced (Jenny et al. J. Comput. Phys. 217(2), 627–641 2006) for solving coupled flow and transport problems....  相似文献   
332.
Interactions in a Fe–C–O–H–N system that controls the mobility of siderophile nitrogen and carbon in the Fe0-saturated upper mantle are investigated in experiments at 6.3–7.8 GPa and 1200–1400 °C. The results show that the γ-Fe and metal melt phases equilibrated with the fluid in a system unsaturated with carbon and nitrogen are stable at 1300 °C. The interactions of Fe3C with an N-rich fluid in a graphite-saturated system produce the ε-Fe3N phase (space group P63/mmc or P6322) at subsolidus conditions of 1200–1300 °C, while N-rich melts form at 1400 °C. At IW- and MMO-buffered hydrogen fugacity (fH2), fluids vary from NH3- to H2O-rich compositions (NH3/N2?>?1 in all cases) with relatively high contents of alkanes. The fluid derived from N-poor samples contains less H2O and more carbon which mainly reside in oxygenated hydrocarbons, i.e., alcohols and esters at MMO-buffered fH2 and carboxylic acids at unbuffered fH2 conditions. In unbuffered conditions, N2 is the principal nitrogen host (NH3/N2?≤?0.1) in the fluid equilibrated with the metal phase. Relatively C- and N-rich fluids in equilibrium with the metal phase (γ-Fe, melt, or Fe3N) are stable at the upper mantle pressures and temperatures. According to our estimates, the metal/fluid partition coefficient of nitrogen is higher than that of carbon. Thus, nitrogen has a greater affinity for iron than carbon. The general inference is that reduced fluids can successfully transport volatiles from the metal-saturated mantle to metal-free shallow mantle domains. However, nitrogen has a higher affinity for iron and selectively accumulates in the metal phase, while highly mobile carbon resides in the fluid phase. This may be a controlling mechanism of the deep carbon and nitrogen cycles.  相似文献   
333.
A simple statistical model of daily precipitation based on the gamma distribution is applied to summer (JJA in Northern Hemisphere, DJF in Southern Hemisphere) data from eight countries: Canada, the United States, Mexico, the former Soviet Union, China, Australia, Norway, and Poland. These constitute more than 40% of the global land mass, and more than 80% of the extratropical land area. It is shown that the shape parameter of this distribution remains relatively stable, while the scale parameter is most variable spatially and temporally. This implies that the changes in mean monthly precipitation totals tend to have the most influence on the heavy precipitation rates in these countries. Observations show that in each country under consideration (except China), mean summer precipitation has increased by at least 5% in the past century. In the USA, Norway, and Australia the frequency of summer precipitation events has also increased, but there is little evidence of such increases in any of the countries considered during the past fifty years. A scenario is considered, whereby mean summer precipitation increases by 5% with no change in the number of days with precipitation or the shape parameter. When applied in the statistical model, the probability of daily precipitation exceeding 25.4 mm (1 inch) in northern countries (Canada, Norway, Russia, and Poland) or 50.8 mm (2 inches) in mid-latitude countries (the USA, Mexico, China, and Australia) increases by about 20% (nearly four times the increase in mean). The contribution of heavy rains (above these thresholds) to the total 5% increase of precipitation is disproportionally high (up to 50%), while heavy rain usually constitutes a significantly smaller fraction of the precipitation events and totals in extratropical regions (but up to 40% in the tropics, e.g., in southern Mexico). Scenarios with moderate changes in the number of days with precipitation coupled with changes in the scale parameter were also investigated and found to produce smaller increases in heavy rainfall but still support the above conclusions. These scenarios give changes in heavy rainfall which are comparable to those observed and are consistent with the greenhouse-gas-induced increases in heavy precipitation simulated by some climate models for the next century. In regions with adequate data coverage such as the eastern two-thirds of contiguous United States, Norway, eastern Australia, and the European part of the former USSR, the statistical model helps to explain the disproportionate high changes in heavy precipitation which have been observed.  相似文献   
334.
To reduce the numerical complexity of inverse solutions to large systems of discretised integral equations in gravimetric geoid/quasigeoid modelling, the surface domain of Green’s integrals is subdivided into the near-zone and far-zone integration sub-domains. The inversion is performed for the near zone using regional detailed gravity data. The farzone contributions to the gravity field quantities are estimated from an available global geopotential model using techniques for a spherical harmonic analysis of the gravity field. For computing the far-zone contributions by means of Green’s integrals, truncation coefficients are applied. Different forms of truncation coefficients have been derived depending on a type of integrals in solving various geodetic boundary-value problems. In this study, we utilise Molodensky’s truncation coefficients to Green’s integrals for computing the far-zone contributions to the disturbing potential, the gravity disturbance, and the gravity anomaly. We also demonstrate that Molodensky’s truncation coefficients can be uniformly applied to all types of Green’s integrals used in solving the boundaryvalue problems. The numerical example of the far-zone contributions to the gravity field quantities is given over the area of study which comprises the Canadian Rocky Mountains. The coefficients of a global geopotential model and a detailed digital terrain model are used as input data.  相似文献   
335.
For the first time we propose a real physical mechanism for 'extra mixing' in red giants that can quantitatively interpret all the known star-to-star abundance variations in globular clusters. This is Zahn's mechanism. It considers extra mixing in a radiative zone of a rotating star as a result of the joint operation of meridional circulation and turbulent diffusion. It is shown that the only free parameter, the angular velocity at the base of the convective envelope, can be so adjusted as to fit the observed abundance correlations without leading to a conflict with available data on rotation velocities of blue horizontal branch stars in the same cluster. There are two critical assumptions in our model, that the top of the radiative zone is not in synchronous rotation with the stellar surface but rotates significantly faster and that the criterion for shear instability takes a particular form. These will eventually be tested by three-dimensional hydrodynamical simulations.  相似文献   
336.
Tree radial growth is influenced by individual tree abilities, climate, competition, disturbance regimes, as well as biogeomorphic processes – including biomechanical interactions between trees and soil. Trees are actively involved in hillslope dynamics, both responding to and affecting many (bio)geomorphic processes. Using dendrochronology, we studied feedbacks associated with tree–soil–landscape formation, specifically relationships between hillslope processes, biomechanical effects of trees in soils, tree microhabitat conditions and their morphological adaptations, in the flysch zone of the Carpathians. We visually evaluated stem shape, microhabitat conditions and the biomechanical effects of 1663 trees. Cores were taken in four growing directions from 224 individuals of European beech (Fagus sylvatica L.). In a set of 193 cross-dated beeches, average tree-ring widths and tree eccentricities in all directions were calculated and analysed in relation to the biogeomorphic impacts of trees. Some significant drivers of tree radial growth and sources of stem eccentricity were detected. The radial growth of trees on which deadwood was leaning was markedly limited. In contrast, trees with exposed roots expressed the highest growth rates. This clearly suggests that root exposure may not be an effect of ‘exogenous’ soil creep, but may rather result from individually intensifying tree growth due to fine-scale disturbance dynamics. The response of biomechanical tree–soil interactions in tree radial growth weakened with increasing stem diameter, reflecting the stabilizing role of larger trees. The significance of calendar year on radial growth suggests seasonality in the dynamic component of soil creep. Tree eccentricity was observed mainly in the downslope direction, which suggests a relatively complex effect of biomechanics on stem tilting. © 2020 John Wiley & Sons, Ltd.  相似文献   
337.

The day-to-day effects of the strong geomagnetic disturbances on geopotential heights (GPH) in the winter lower atmosphere were described in many papers in the beginning of 1970s. These works focused on the North-East Pacific, while the North Atlantic was until now omitted. Our aim is therefore to investigate the possible effect of strong geomagnetic disturbances on the lower atmosphere GPH changes over the winter North Atlantic on the day-to-day time scale, represented by the daily index of the North Atlantic Oscillation (NAO). The investigated intervals are winter periods (December-March) of 1951–2003. The daily NAO average values in 3-day intervals before and after the disturbance onsets are compared. The graphs of NAO differences are complemented by the maps of GPH differences. The NAO response to geomagnetic disturbance, as registered on the day-to-day time scale, also shows a change in its behaviour around the year 1970. This response reaches its highest values in the years 1951–1969, usually 2–5 days following the onset of geomagnetic disturbances. Intensity of the response depends on the disturbance intensity (the largest differences were associated with extremely strong disturbances).

  相似文献   
338.
339.
We present results of a study of the seismicity and the geoelectric structure of the Eastern Carpathians. After the evaluation of the seismicity, new methods of processing and analyzing seismic data are developed, which allow constructing an averaged horizontal-layered velocity model of the crust in the Carpathian region of Ukraine, tracing the seismic active faults and localizing the seismic events both in horizontal and in vertical direction with a better precision. For the study of the conductivity structure beneath the Eastern Carpathians, the collected magnetovariation and magnetotelluric data are used. The depth of electrical conductivity anomalies are estimated and the resulting quasi-3D model of the conductivity structure beneath the Carpathians is compared with the seismicity in the depth range of 10 ± 2.5 km. The comparison suggests possible geological mechanisms: the seismic events occur mainly in resistive solid rock domains which surround aseismic high-conductivity zones, consisting of at least partially melted material. Aqueous fluids, or a joint effect of several mechanisms, may also play an active role in this distribution.  相似文献   
340.
In this study we assume that a gravitational curvature tensor, i.e. a tensor of third-order directional derivatives of the Earth’s gravitational potential, is observable at satellite altitudes. Such a tensor is composed of ten different components, i.e. gravitational curvatures, which may be combined into vertical–vertical–vertical, vertical–vertical–horizontal, vertical–horizontal–horizontal and horizontal–horizontal-horizontal gravitational curvatures. Firstly, we study spectral properties of the gravitational curvatures. Secondly, we derive new quadrature formulas for the spherical harmonic analysis of the four gravitational curvatures and provide their corresponding analytical error models. Thirdly, requirements for an instrument that would eventually observe gravitational curvatures by differential accelerometry are investigated. The results reveal that measuring third-order directional derivatives of the gravitational potential imposes very high requirements on the accuracy of deployed accelerometers which are beyond the limits of currently available sensors. For example, for orbital parameters and performance similar to those of the GOCE mission, observing third-order directional derivatives requires accelerometers with the noise level of \({\sim}10^{-17}\,\hbox {m}\,\hbox {s}^{-2}\) Hz\(^{-1/2}\).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号