Fluid migration within the sedimentary column contributes significantly to slope failure and pockmark formation and can be an effective triggering mechanism to generate submarine landslides. Pockmarks are thus commonly listed among geohazards. Contrary to these accepted notions, we propose here an alternative view of pockmarks with an example from the Eastern Niger Submarine Delta: Pockmarks and associated chimneys may increase or modify the shear strength of sedimentary layers and locally enhance seafloor stability. The analysis of two 3D seismic volumes shows that a landslide deposit divides into two branches around a cluster of three pockmark chimneys, interpreted to impede its further development. The morphological characteristics of a slide constrained by fluid seepage features show the potential role of fluid escape in marine sediment strengthening. 相似文献
The kinetic energy (KE) seasonality has been revealed by satellite altimeters in many oceanic regions. Question about the mechanisms that trigger this seasonality is still challenging. We address this question through the comparison of two numerical simulations. The first one, with a 1/10° horizontal grid spacing, 54 vertical levels, represents dynamics of physical scales larger than 50 km. The second one, with a 1/30° grid spacing, 100 vertical levels, takes into account the dynamics of physical scales down to 16 km. Comparison clearly emphasizes in the whole North Pacific Ocean, not only a significant KE increase by a factor up to three, but also the emergence of seasonal variability when the scale range 16–50 km (called submesoscales in this study) is taken into account. But the mechanisms explaining these KE changes display strong regional contrasts. In high KE regions, such the Kuroshio Extension and the western and eastern subtropics, frontal mixed-layer instabilities appear to be the main mechanism for the emergence of submesoscales in winter. Subsequent inverse kinetic energy cascade leads to the KE seasonality of larger scales. In other regions, in particular in subarctic regions, results suggest that the KE seasonality is principally produced by larger-scale instabilities with typical scales of 100 km and not so much by smaller-scale mixed-layer instabilities. Using arguments from geostrophic turbulence, the submesoscale impact in these regions is assumed to strengthen mesoscale eddies that become more coherent and not quickly dissipated, leading to a KE increase. 相似文献
As coastlines face increased development pressure, it is important to have the best available spatial information on coastal activities, including commercial fishing. This article describes the creation of a fine-scale spatial representation of lobster fishing activity along the Maine coast of the United States using a combination of participatory geographic information systems (GIS) and dasymetric mapping methods. These methods are employed here to support data collection from a large number of active lobster harvesters while maintaining individual privacy. The resulting representation of the fishery is designed as a planning tool for identifying potential interactions between marine resources and human activities. 相似文献
Groundwater chemical data from Birkenes, southern Norway, collected during the period October 1980 to November 1993, reveal intensifying acidification in the 1990s, as evidenced by decreases in pH, acid-neutralising capacity and alkalinity, and increases in hardness/alkalinity ratio, ‘acidification’, nitrate, non-marine sulphate (SO4*), non-marine hardness (Ca* + Mg*) and dissolved aluminium. The whole monitoring period is characterised by slopes of four or more on a plot of (Ca* + Mg*) vs. alkalinity.
Owing to its proximity to the sea, the Birkenes catchment receives seasalt-influenced precipitation, which results in episodic, natural acidification of the groundwater via cation exchange of marine Na+ with soil-bound H+ and/or Al3+. However, it is uncertain whether all of the recent groundwater acidification can be attributed to intensifying seasalt deposition alone: the steep slopes on the (Ca* + Mg*) vs. alkalinity plot and the increase in groundwater SO4* suggest that strong acids, of possible anthropogenic origin, may be involved. Additionally, seasalt deposition appears not to have increased during the 1990s: Cl− content in precipitation has not increased significantly and river water pH has not decreased significantly over the period 1990–1993. The suggestion is made that the observed intensification in groundwater acidification at Birkenes partly results from the exhaustion or weakening of an acid buffering system caused by soil acidification, under persisting, even if abating, anthropogenic acid loading. 相似文献
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both. 相似文献
Current velocity and suspended sediment concentration measurements at anchor stations in the downstream extremity of the Gironde estuary indicate that during periods of high river discharge, a significant amount of suspended sediment is transported out of the estuary onto the adjacent continental shelf. The vertical profile of the residual (non-tidal) suspended sediment flux is similar to that of the residual current velocity, with a net upstream flux near the bottom and an overlying seaward-directed transport. The overall, depth-integrated result is a net seaward transport of suspended sediment out of the estuary. It appears that this net seaward transport varies directly with tidal amplitude.Aerial photography and water sampling indicate that during high river inflow, the downstream extremity of the turbidity maximum extends onto the continental shelf at ebb tide. The tidal and coastal current patterns of the inlet and inner shelf induce a northward transport of the turbid estuarine water, and at each tidal cycle, a certain amount of suspended sediment leaves the estuary; part of this sediment is deposited in a silt and clay zone on the continental shelf. 相似文献
Fish school swimming speeds is essential for ecological and management studies. The multibeam sonar in horizontal beaming
provided dynamic echo traces of mobile fish schools. We used two school swimming speed indicators: the average of a series
of instantaneous speed values, and the exploratory speed. These swimming speeds were estimated for each fish school observed
on the basis of their Euclidian position within the sonar beams. The average ISS values per school ranged from 0.15 m s−1 to 4.46 m s−1, while the ESS values per school were lower, ranging from 0.04 m s−1 to 3.77 m s−1. Multibeam sonar technology makes it possible to measure fish school swimming speeds in their natural habitat at small spatio-temporal
scales. This methodology can therefore be used to analyse in situ their movements, and has a wide range of applications in
behavioural studies and management purposes. 相似文献