首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
测绘学   2篇
大气科学   6篇
地球物理   10篇
地质学   7篇
海洋学   4篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   3篇
  1995年   1篇
  1986年   1篇
排序方式: 共有31条查询结果,搜索用时 0 毫秒
31.
In snow-fed catchments, it is crucial to monitor and model the snow water equivalent (SWE), particularly when simulating the melt water runoff. SWE distribution can, however, be highly heterogeneous, particularly in forested environments. Within these locations, scant studies have explored the spatiotemporal variability in SWE in relation with vegetation characteristics, with only few successful attempts. The aim of this paper is to fill this knowledge gap, through a detailed monitoring at nine locations within a 3.49 km2 forested catchment in southern Québec, Canada (47°N, 71°W). The catchment receives an annual average of 633 mm of solid precipitation and is predominantly covered with balsam fir stands. Extracted from intensive field campaign and high-resolution LiDAR data, this study explores the effect of fine scale forest features (tree height, tree diameter, canopy density, leaf area index [LAI], tree density and gap fraction) on the spatiotemporal variability in the SWE distribution. A nested stratified random sampling design was adopted to quantify small-scale variability across the catchment and 1810 manual snow samples were collected throughout the consecutive winters of 2016–17 and 2017–18. This study explored the variability of SWE using coefficients of variation (CV) and relating to the LAI. We also present existing spatiotemporal differences in maximum snow depth across different stands and its relationship with average tree diameter. Furthermore, exploiting key vegetation characteristics, this paper explores different approaches to model SWE, such as multiple linear regression, binary regression tree and neural networks (NN). We were unable to establish any relationship between the CV of SWE and the LAI. However, we observed an increase in maximum snow depth with decreasing tree diameter, suggesting an association between these variables. NN modelling (Nash-Sutcliffe efficiency [NSE] = 0.71) revealed that, snow depth, snowpack age and forest characteristics (tree diameter and tree density) are key controlling variables on SWE. Using only variables that are deemed to be more readily available (snow depth, tree height, snowpack age and elevation), NN performance falls by only 7% (NSE = 0.66).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号