首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
  国内免费   3篇
大气科学   8篇
地球物理   16篇
地质学   62篇
海洋学   14篇
天文学   6篇
自然地理   27篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2014年   4篇
  2013年   17篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   7篇
  1996年   11篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
101.
102.
ABSTRACT The early metamorphic history of high-grade exotic blocks in the Franciscan Complex may be more complicated than previously supposed. The different assemblages of high-grade glaucophane schist, eclogite, amphibolite and hornblende schist are commonly considered to have formed at the same time from essentially unmetamorphosed oceanic crust. However, new textural and mineralogical data presented here suggest that high-grade glaucophane schist and eclogite have replaced an earlier epidote-amphibolite facies assemblage that is identical to the primary assemblages in many of the hornblende-rich blocks. At least some of the hornblende-rich blocks may therefore be well-preserved remnants of the earlier metamorphism. Comparison of the mineral assemblages and element partitioning in the mixed-assemblage blocks suggests that the glaucophane schist and eclogite metamorphism took place at slightly lower temperatures but at the same or higher pressures than the earlier, hornblende-forming stage.  相似文献   
103.
A local-scale phase-resolving wave transformation model with CGWAVE is established in connection with a regional-scale coupled STWAVE-ADCIRC wave-current model for its application in the Half Moon Bay, Grays Harbor. Wave transformation from offshore to the harbor entrance is simulated by the STWAVE model which includes wave-current interaction. The STWAVE results provide incident wave conditions for the local-scale CGWAVE model at its outer boundary. A simple method is developed to take into ac- count the lateral variation of wave height in constructing the model's wave boundary conditions. The model was validated for three wave condition cases which yielded good agreement with field data. The validated model was applied to predicting nearshore waves in the Half Moon Bay and longshore transport parameters along the wave breaking line for the existing condition and three engi- neering alternatives. A comparative analysis indicated that storm waves that have a combination of long period and large height are the most destructive to the crenulate shoreline in the Half Moon Bay; both 152 m jetty extension (Alt. 2) and diffraction mound enlargement ( Alt. 3) would significantly reduce breaking wave height and longshore transport potential in the southwest comer of Half Moon Bay.  相似文献   
104.
Petrology of Submarine Lavas from Kilauea's Puna Ridge, Hawaii   总被引:5,自引:8,他引:5  
We have studied 30 quenched tholeiitic lava flows recoveredby 20 dredge hauls and one submersible dive along Puna Ridge,the submarine part of the East Rift Zone of Kilauea Volcano,Hawaii Glass grains from numerous additional flows were recoveredin turbidite sands cored in the Hawaiian Trough. These quenchedlavas document variable primary magma compositions; olivineand multiphase crystallization and fractionation; degassing;wall-rock stoping and assimilation; mixing in the crustal reservoirand the rift zone; entrainment of olivine xenocrysts from ahot, ductile, olivine cumulate body; and disruption of gabbrowallrocks in the rift zone. Glass grains in turbidite sands contain up to 15•0wt% MgO,in contrast to < 7•0wt% MgO for the sampled glass rindson lavas. The most forsteritic olivine phenocryst (F0907) isin equilibrium with primary Kilauea liquid containing an average16•5 wt% MgO, but ranging from 13•4 to 18•4%.Lavas and glass grains have more restricted P2O5/K2O and TiO2/K2Othan glass inclusions in olivine, because more diverse liquidstrapped as glass inclusions are mixed and homogenized beforeeruption. Variable trace element compositions in glass grainsand whole rocks indicate that the primary liquids form by partialmelting of mantle sources retaining clinopyroxene and garnet. Orthopyroxene xenocrysts formed at moderate pressures provideevidence for a sub-crustal staging zone. Chromite and olivinecrystallize in the crustal magma reservoir as the liquid coolsfrom an average 1346C to 1170C. Low viscosities of the primaryliquids (04 Pas) facilitate olivine settling, and the crystallizedolivine forms an olivine cumulate body at the base of the reservoir.Olivine is deformed as the hot ductile dunite body flows downand away from the summit. This flow drives instability of theHilina landslide on Kilauea. Dikes intrude the dunite, and magmaflowing through the dikes disaggregates and entrains olivinexenocrysts in Puna Ridge magmas. Primary liquids pond at or near the base of Kilauea's crustalreservoir because they are denser than more fractionated liquidsthat occupy the upper parts of the reservoir. The sulfur andwater contents of glass rinds indicate that fractionated liquidsnear the top of the reservoir degas at low pressure, a processthat increases their density and causes them to sink to levelswhere they mix with resident undegassed, near-primary liquid.The fractionated liquids near the top of the magma reservoiracquire excess Cl, owing to assimilation of hydrothermally alteredroofrocks. Magma flowing into the rift zone encounters and mixes with low-temperature,multiphase-fractionated melt. The mixed magmas typically containrare orthopyroxene, plagioclase as sodic as andesine, olivineas fayalitic as F075 and Fe-rich augite derived from the fractionatedmagma. Magma flowing through dikes also dislodged fragmentsof gabbroic wallrocks that occur as xenoliths. The interrelations in the Kilauean submarine lavas between hostglass and glass inclusion compositions, volatile contents andmineral chemistry reveal an extraordinarily complex sequenceof petrogenetic processes and events that are difficult or impossibleto determine in subaerial Kilauea lavas because of crystallization,reequilibration and degassing during or after their eruption. KEY WORDS: submarine lavas; petrology; Kilauea; Hawaii; magma mixing *Corresponding authorPresent address: Rosentiel School of Marine and Atmospheric Science, Division of Marine Geology and Geophysics, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA  相似文献   
105.
Earlier interpretations of textural alteration affecting Great Salt Lake ooids have greatly influenced concepts of ooid diagenesis. Scanning electron microscope study shows, however, that the coarse radial aragonite rays are depositional, that no recrystallization of pellet cores has occurred, and that Great Salt Lake ooids have not suffered noticeable diagenesis. As suggested by Kahle (1974), radial texture in ancient calcitic ooids is probably mainly original, not diagenetic. Retention of such fine textures has been attributed to organic matter (since found to be equivalent in modern skeletal and non-skeletal grains) or to paramorphic replacement (proposed for non-skeletal grains whose original aragonite mineralogy was only inferred from modern analogs). Pleistocene ooids known to have been aragonite alter like aragonite shells to coarse neomorphic calcite, often with aragonite relics. The striking uniformity of that coarse texture in neomorphic calcite replacing known skeletal aragonites throughout the geologic record has been noted for over 100 years. In contrast, Mississippian ooids retain fine texture as do calcite layers of coexisting gastropods, but unlike the strongly altered aragonite layers of these same gastropods. Therefore, inferences of original aragonitic mineralogy of ancient non-skeletal carbonate grains (including muds) which are now calcite but retain fine texture appear unwarranted, as do assumptions of differential diagenetic behaviour of ancient aragonitic skeletal and non-skeletal grains. Accordingly, modern depositional environments of marine ooids and carbonate muds must be rejected as chemically unrepresentative of comparable ancient environments. It is inferred that ancient non-skeletal carbonates were originally predominantly or exclusively calcite because of an earlier lower oceanic Mg/Ca ratio (<2/1) which altered progressively to values favouring aragonite (modern Mg/Ca value = 5/1). Major influencing factors are: selective removal of calcium by planktonic foraminifers and coccolithophorids since Jurassic-Cretaceous time and by abundant younger, Mg-poor aragonite skeletons and an erratic trend toward decreasing dolomite formation (decreasing removal of oceanic Mg). The change to aragonite dominance over calcite for non-skeletal carbonates was probably during early to middle Cenozoic time.  相似文献   
106.
107.
Past environmental changes in the Baltic area are discussed on the basis of pollen and spores recovered from marine sediments in a series of cliff sections at Mommark, in southern Denmark. The sediment succession represents Jessen & Milthers' (1928) Eemian pollen zones c-h, or Andersen's (1961 1975) zones E1/2-E7, as well as the earliest Weichselian pollen zone i, or EW-1, the Herning Stadial. A correlation with annually laminated German sequences (e.g. Bispingen) indicates that the sequence spans approximately 11 000 years. Marine deposition began c. 300 years after the beginning of the Eemian Interglacial Stage and continued to shortly before the end of pollen zone E7, at c. 10 600 years after the beginning of the Eemian. Sedimentation rates varied through the time period represented by the sequence, with initial deposition relatively rapid at c. 0.35 cm yr-1 for the first c. 300 years. Rates then decreased to 0.029 cm yr-1 for the next 2700 years and remained low, though varying, throughout the rest of the sequence. Overall, the rates indicate that sediment supply was highly restricted throughout the interglacial, possibly reflecting the dense forest vegetation that colonized the hinterland.  相似文献   
108.
This paper relates recent proglacial fluvial channel change at Skaftafellsjökull, southeast Iceland, to glacier margin fluctuations. Observations of the western portion of the proglacial braided sandur were made annually between 1996 and 2000. Between 1996 and 1998, during a period of glacier advance, the proximal proglacial outwash surface at the western end of the glacier margin was characterized by a complex braided channel pattern active over the entire sandur surface. Retreat of the glacier margin since 1998 led to rapid incision, so that by 1999 abandonment of the proximal terrace surface and reorganization of the proglacial fluvial system into a single, entrenched channel had occurred. Further retreat and incision occurred during 1999–2000. These observations demonstrate that glacier retreat at Skaftafellsjökull is accompanied by short-lived rapid incision events and terrace formation, separated by long intervals of relatively minor change rather than progressive incision over long time periods. The margin of Skaftafellsjökull is thought to be particularly sensitive to retreat, as the glacier occupies an overdeepening behind the snout and results in lowering of the river's point of exit from the glacier, necessitating adjustment of the river's long profile.  相似文献   
109.
Holocene glacier variations pre‐dating the Little Ice Age are poorly known in the western Alps. Studied for two centuries, the Miage morainic amphitheatre (MMA) is composed of three subconcentric sets of c. 25 moraines. Because of its location and of a dominant mode of morainic accretion, the MMA is a well‐preserved marker of the glacier dynamics during the Neoglacial. Radiocarbon dates were obtained by digging and coring in inter‐ morainic depressions of the MMA and through a deep core drilling in a dammed‐lake infill (Combal); complementary data for the inner MMA were obtained by lichenometry and dendrochronology. Radiocarbon chronology shows that (i) the MMA not only pre‐dates the Little Ice Age (LIA), but was built at least since 5029–4648 cal. yr BP (beginning of the Neoglacial); (ii) outer sets of moraines pre‐date 2748–2362 cal. yr BP; (iii) the MMA dammed the Lake Combal from 4.8 to 1.5 cal. kyr BP, while lakes/ponds formed inside the moraines (e.g. from 2147–1928 to 1506–1295 cal. yr BP). The ‘Neoglacial model’ proposed here considers that the MMA formed during the whole Neoglacial by a succession of glacier advances at 4.8–4.6 cal. ky BP (early Neoglacial), around 2.5 cal. ky BP (end of Göschener I), at AD 600–900 (end of Göschener II) and during the LIA, separated by raising phases of the right‐lateral moraine by active dumping because of the Miage debris cover.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号