首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   37篇
  国内免费   3篇
测绘学   30篇
大气科学   48篇
地球物理   215篇
地质学   223篇
海洋学   129篇
天文学   174篇
综合类   5篇
自然地理   48篇
  2021年   8篇
  2020年   12篇
  2019年   5篇
  2018年   15篇
  2017年   17篇
  2016年   17篇
  2015年   15篇
  2014年   21篇
  2013年   42篇
  2012年   19篇
  2011年   30篇
  2010年   31篇
  2009年   40篇
  2008年   32篇
  2007年   32篇
  2006年   39篇
  2005年   19篇
  2004年   27篇
  2003年   26篇
  2002年   20篇
  2001年   17篇
  2000年   20篇
  1999年   14篇
  1998年   20篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   12篇
  1993年   9篇
  1992年   17篇
  1991年   10篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   13篇
  1986年   7篇
  1985年   21篇
  1984年   32篇
  1983年   15篇
  1982年   15篇
  1981年   22篇
  1980年   13篇
  1979年   10篇
  1978年   13篇
  1977年   10篇
  1976年   13篇
  1975年   11篇
  1974年   7篇
  1973年   11篇
  1971年   5篇
排序方式: 共有872条查询结果,搜索用时 250 毫秒
181.
Depth profiles of the naturally-occurring radionuclides 238U, 234U, 226Ra, 228Ra and 228Th were obtained in two diverse anoxic marine environments; the permanently anoxic Framvaren Fjord in southern Norway and the intermittently anoxic Saanich Inlet in British Columbia. Concentrations of total H2S were over three orders of magnitude greater in the anoxic bottom waters of Framvaren Fjord compared to those in Saanich Inlet.In Framvaren Fjord, the O2/H2S interface was located at 17 m. While dissolved 238U behaved conservatively throughout the oxic and anoxic water columns, concentrations based on the 238U/salinity ratio in oxic oceanic waters were almost 30% lower. Dissolved 226Ra displayed a sharp maximum just below the O2/H2S interface, coinciding with dissolved Mn (II) and Fe (II) maxima in this zone. It is suggested that reductive dissolution of Fe-Mn oxyhydroxides remobilizes 226Ra in this region.In Saanich Inlet, the O2/H2S interface was located at 175 m. Dissolved 238U displayed a strongly nonconservative distribution. The depth profiles of dissolved 226Ra and 228Th correlated well with the distribution of dissolved Mn (II) in the suboxic waters above the O2/H2S interface, suggesting that reduction of particulate Mn regulates the behavior of 226Ra and 228Th in this region.Removal residence times for dissolved 228Th in the surface oxic waters of both systems are longer than those generally reported for particle-reactive radionuclides in coastal marine environments. In the anoxic waters of Framvaren Fjord and Saanich Inlet, however, the dissolved 228Th removal residence times are quite similar to values reported for dissolved 210Pb in the anoxic waters of the Cariaco Trench and the Orca Basin. This implies that the geochemistries of Th and Pb may be similar in anoxic marine waters.  相似文献   
182.
183.
The Bengal Fan: morphology, geometry, stratigraphy, history and processes   总被引:2,自引:0,他引:2  
The Bengal Fan is the largest submarine fan in the world, with a length of about 3000 km, a width of about 1000 km and a maximum thickness of 16.5 km. It has been formed as a direct result of the India–Asia collision and uplift of the Himalayas and the Tibetan Plateau. It is currently supplied mainly by the confluent Ganges and Brahmaputra Rivers, with smaller contributions of sediment from several other large rivers in Bangladesh and India.The sedimentary section of the fan is subdivided by seismic stratigraphy by two unconformities which have been tentatively dated as upper Miocene and lower Eocene by long correlations from DSDP Leg 22 and ODP Legs 116 and 121. The upper Miocene unconformity is the time of onset of the diffuse plate edge or intraplate deformation in the southern or lower fan. The lower Eocene unconformity, a hiatus which increases in duration down the fan, is postulated to be the time of first deposition of the fan, starting at the base of the Bangladesh slope shortly after the initial India–Asia collision.The Quaternary of the upper fan comprises a section of enormous channel-levee complexes which were built on top of the preexisting fan surface during lowered sea level by very large turbidity currents. The Quaternary section of the upper fan can be subdivided by seismic stratigraphy into four subfans, which show lateral shifting as a function of the location of the submarine canyon supplying the turbidity currents and sediments. There was probably more than one active canyon at times during the Quaternary, but each one had only one active fan valley system and subfan at any given time. The fan currently has one submarine canyon source and one active fan valley system which extends the length of the active subfan. Since the Holocene rise in sea level, however, the head of the submarine canyon lies in a mid-shelf location, and the supply of sediment to the canyon and fan valley is greatly reduced from the huge supply which had existed during Pleistocene lowered sea level. Holocene turbidity currents are small and infrequent, and the active channel is partially filled in about the middle of the fan by deposition from these small turbidity currents.Channel migration within the fan valley system occurs by avulsion only in the upper fan and in the upper middle fan in the area of highest rates of deposition. Abandoned fan valleys are filled rapidly in the upper fan, but many open abandoned fan valleys are found on the lower fan. A sequence of time of activity of the important open channels is proposed, culminating with formation of the one currently active channel at about 12,000 years BP.  相似文献   
184.
The presence of gas is a common feature in many seismic sections. However, the origin of the gas is often difficult to determine. Recently acquired very high resolution seismic profiles using an IKB Seistec boomer provide useful insight to the understanding of the gas origins in a range of environmental settings including sea lochs and coastal lagoons. The gas features are described both from a qualitative point of view through their acoustic facies, and quantitatively through the associated seismic signal (polarisation, amplitude). Acoustic facies include acoustic turbidity, gas “curtains” and “blankets” as well as “white fringes” and “black shadows”. All the features encountered have been related to specific gas nature generated by different sources (organic matter degradation in paleo-valley infillings, waste material effluent).  相似文献   
185.
This paper describes a computational model of digestive gland epithelial cells (digestive cells) of marine mussels. These cells are the major environmental interface for uptake of contaminants, particularly those associated with natural particulates that are filtered from seawater by mussels. Digestive cells show well characterised reactions to exposure to lipophilic xenobiotics, such as oil-derived aromatic hydrocarbons (AHs), which accumulate in these cells with minimal biotransformation. The simulation model is based on processes associated with the flux of carbon through the cell. Physiological parameters such as fluctuating food concentration, cell volume, respiration, secretion/excretion, storage of glycogen and lipid, protein/organelle turnover (autophagy/resynthesis) and export of carbon to other tissues of the mussel are all included in the model. The major response to AHs is induction of increased autophagy in these cells. Simulations indicate that the reactions to AHs and food deprivation correspond well with responses measured in vivo.  相似文献   
186.
Certain specific aspects of cellular structure-linked functions can be used as rapid and sensitive indicators of cellular responses to environmental stimuli such as chemical contaminants.1 It is possible to observe structural-functional alterations in lysosomal membrane stability in the cells of some marine organisms at an early stage of such a response to cell injury,1,2 thus providing an early-warning signal of a potentially deleterious environmental situation. In order to further investigate lysosomal membrane disturbances, mechanisms of injury and capacity for cellular regeneration, the marine snail Littorina littorea was exposed to phenanthrene, which was used as an environmentally widespread and representative polynuclear aromatic hydrocarbon. Lysosomal membrane stability was measured using cytochemical determination of hydrolase latency,2 and lysosomal lipofuscin was measured as a possible indicator of enhanced lipid peroxidative damage.3  相似文献   
187.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   
188.
Distributions of vertical electric current density (J z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on 6 and 7 April, 1980 with the MSFC vector magnetograph; ultraviolet wavelength spectroheliograms (L and Nv 1239 Å) were obtained with the UVSP experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J z (5 arc sec resolution) and UV (3 arc sec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. We conclude that although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in our measurements and have no simple correlation with the residual current measured on 5 arc sec scales.National Research Council Resident Research Associate.National Oceanic and Atmospheric Administration Space Environment Laboratory; currently at MSFC/SSL.  相似文献   
189.
Internal structure, stable isotope composition and tritium concentration were measured in and around debris‐bearing ice at the margin of Storglaciären, where englacial debris bands have previously been inferred to form by thrusting. Two types of debris bands were distinguished: (i) an unsorted diamicton band that is laterally continuous for more than 200 m, and (ii) well‐sorted sand and gravel bands that are lenticular and discontinuous. Above‐background tritium levels and enrichment of δ18 O and δD in ice from the diamicton band indicate entrainment by basal freeze‐on since 1952. Isotopic enrichment and tritium‐free ice in the sandy debris bands also indicate entrainment in freezing water, but prior to 1952. The lenticular cross‐section, sorting and stratification of the sandy bands suggest that they were deposited englacially. The basally accreted diamicton band has been elevated tens of metres above the bed and presently overlies the englacially deposited sandy bands, suggesting that the stratigraphy has been disrupted. Three interpretations could account for these observations: (i) thrusting of fast‐moving ice over slow, marginal ice uplifting recently accreted basal ice along the fault; (ii) folding near the margin, elevating young basal ice over older basal and englacial ice; and (iii) debris‐band formation by an unknown mechanism and subsequent contamination of ice geochemical properties by meltwater flow through debris bands. Although none of these interpretations is consistent with all measurements, folding is most compatible with observations and local ice‐flow kinematics.  相似文献   
190.
 A large river ice jam and associated flooding in February 1996 on the Blackfoot and Clark Fork Rivers of western Montana mobilized large amounts of fine-grained sediment. Metal concentrations in sediment downstream from a reservoir containing large amounts of contaminated sediment were enriched in metals after the ice jam, while open reaches above the reservoir were diluted by ice-jam processes. This varied response shows the importance of understanding ice jam events to sediment and metal transport and suggests that ice jams must be considered as important agents affecting sediment metal concentrations in rivers. Received: 4 December 1997 · Accepted: 23 February 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号