首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42171篇
  免费   592篇
  国内免费   354篇
测绘学   1292篇
大气科学   3071篇
地球物理   8583篇
地质学   13841篇
海洋学   3655篇
天文学   10345篇
综合类   114篇
自然地理   2216篇
  2021年   331篇
  2020年   364篇
  2019年   452篇
  2018年   977篇
  2017年   902篇
  2016年   1179篇
  2015年   668篇
  2014年   1118篇
  2013年   2030篇
  2012年   1225篇
  2011年   1620篇
  2010年   1481篇
  2009年   2037篇
  2008年   1790篇
  2007年   1815篇
  2006年   1702篇
  2005年   1289篇
  2004年   1310篇
  2003年   1203篇
  2002年   1239篇
  2001年   1093篇
  2000年   1027篇
  1999年   898篇
  1998年   888篇
  1997年   889篇
  1996年   719篇
  1995年   669篇
  1994年   629篇
  1993年   549篇
  1992年   480篇
  1991年   487篇
  1990年   471篇
  1989年   487篇
  1988年   436篇
  1987年   506篇
  1986年   460篇
  1985年   546篇
  1984年   671篇
  1983年   577篇
  1982年   563篇
  1981年   515篇
  1980年   444篇
  1979年   437篇
  1978年   451篇
  1977年   390篇
  1976年   348篇
  1975年   353篇
  1974年   330篇
  1973年   365篇
  1972年   264篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar–terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center’s forecasts.  相似文献   
982.
The physically based distributed hydrological models are ideal for hydrological simulations; however most of such models do not use the basic equations pertaining to mass, energy and momentum conservation, to represent the physics of the process. This is plausibly due to the lack of complete understanding of the hydrological process. The soil and water assessment tool (SWAT) is one such widely accepted semi-distributed, conceptual hydrological model used for water resources planning. However, the over-parameterization, difficulty in its calibration process and the uncertainty associated with predictions make its applications skeptical. This study considers assessing the predictive uncertainty associated with distributed hydrological models. The existing methods for uncertainty estimation demand high computational time and therefore make them challenging to apply on complex hydrological models. The proposed approach employs the concepts of generalized likelihood uncertainty estimation (GLUE) in an iterative procedure by starting with an assumed prior probability distribution of parameters, and by using mutual information (MI) index for sampling the behavioral parameter set. The distributions are conditioned on the observed information through successive cycles of simulations. During each cycle of simulation, MI is used in conjunction with Markov Chain Monte Carlo procedure to sample the parameter sets so as to increase the number of behavioral sets, which in turn helps reduce the number of cycles/simulations for the analysis. The method is demonstrated through a case study of SWAT model in Illinois River basin in the USA. A comparison of the proposed method with GLUE indicates that the computational requirement of uncertainty analysis is considerably reduced in the proposed approach. It is also noted that the model prediction band, derived using the proposed method, is more effective compared to that derived using the other methods considered in this study.  相似文献   
983.
This paper presents a short theoretical summary of the series expansion-based 2.5D combined geoelectric weighted inversion (CGWI) method and highlights the advantageous way with which the number of unknowns can be decreased due to the simultaneous characteristic of this inversion. 2.5D CGWI is an approximate inversion method for the determination of 3D structures, which uses the joint 2D forward modeling of dip and strike direction data. In the inversion procedure, the Steiner’s most frequent value method is applied to the automatic separation of dip and strike direction data and outliers. The workflow of inversion and its practical application are presented in the study. For conventional vertical electrical sounding (VES) measurements, this method can determine the parameters of complex structures more accurately than the single inversion method. Field data show that the 2.5D CGWI which was developed can determine the optimal location for drilling an exploratory thermal water prospecting well. The novelty of this research is that the measured VES data in dip and strike direction are jointly inverted by the 2.5D CGWI method.  相似文献   
984.
Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan‐view flux maps. Key advantages of heat tracing include cost‐effective sensors and ease of data collection and interpretation, without the need for expensive and time‐consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.  相似文献   
985.
986.
987.
This paper documents an experimental investigation in which a differentially-heated rotating annulus experiment was used to investigate the effects of topography on fluid flow under conditions similar to the atmospheric and oceanic circulation on Earth and other planets. In particular, the relationship between the effects of topographic resonance and the existence and mechanism for generation of low-frequency variability (LFV) were studied, motivated by outstanding questions in works such as Jin and Ghil (J. Atmos. Sci., 1990, 47) and Read and Risch (Geophys. Astrophys. Fluid Dyn., 2011, 105). Whilst employing sinusoidal wavenumber-3 topography a new regime was encountered within a region of stationary wavenumber-3 structural vacillation. Denoted as the “stationary-transition” regime, it featured periodic oscillations between a dominant stationary wavenumber-3 flow and axisymmetric or chaotic flow. Further investigation found that the “stationary-transition” regime appeared to be a near-resonant region where nonlinear topographic resonant instability led to a 23–42 “day” oscillatory behaviour. Within the regime, a Hopf bifurcation sequence was discovered, and the nonlinear instabilities were found to have terms in both wave-zonal flow and wave–wave interactions, including a notable resonant wave-triad. This report summarises the nature of the “stationary-transition” regime, and also makes comparisons with similar regimes of LFV found in other experimental studies, as well as intraseasonal oscillations in the atmosphere.  相似文献   
988.
989.
The “HYDRUS package for MODFLOW” is an existing MODFLOW package that allows MODFLOW to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package is based on incorporating parts of the HYDRUS-1D model (to simulate unsaturated water flow in the vadose zone) into MODFLOW (to simulate saturated groundwater flow). The coupled model is effective in addressing spatially variable saturated-unsaturated hydrological processes at the regional scale. However, one of the major limitations of this coupled model is that it does not have the capability to simulate solute transport along with water flow and therefore, the model cannot be employed for evaluating groundwater contamination. In this work, a modified unsaturated flow and transport package (modified HYDRUS package for MODFLOW and MT3DMS) has been developed and linked to the three-dimensional (3D) groundwater flow model MODFLOW and the 3D groundwater solute transport model MT3DMS. The new package can simulate, in addition to water flow in the vadose zone, also solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption. Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the modified HYDRUS package. The performance of the newly developed model is evaluated using HYDRUS (2D/3D), and the results indicate that the new model is effective in simulating the movement of water and contaminants in the saturated-unsaturated flow domains.  相似文献   
990.
Following Hemker and Maas (1987) the models of two or three leaky aquifers are applied to simulate the flow to vertical wells operating in the fractured or dual porosity aquifers. The software WellTest (WT) (Székely 2015) is used for calculating the drawdown and discharge rate variation. The comparative analysis with the independent analytical solutions by Boulton and Streltsova-Adams (1978), Warren and Root (1963), Kazemi et al. (1969) concluded with acceptable agreement between the WT simulation and the alternate calculation methods. The selected field tests have been conducted in fractured limestone aquifers. The pumping test west of Copenhagen shows an example of fractured aquifer with considerable negative skin effect at the well face. The flowing well Wafra W1 in Kuwait operates in the two-zone aquifer exhibiting sufficient vertical recharge via leakage beyond a circular domain of estimated radius of 2460 m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号