In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献
The objective of this research was to quantify the impact of pollution along the coastlines of the Irish Sea. Pollution assessment was based on the combined measurement of scope for growth (SFG), and chemical contaminants in the tissues of mussels (Mytilus edulis) collected from 38 coastal sites around the Irish Sea during June-July in 1996 and 1997. On the UK mainland coast, the SFG showed a general trend with a significant decline in water quality in the Liverpool and Morecambe Bay region. High water quality was recorded along the west coast of Wales, as well as southwest England and northwest Scotland (clean reference sites outside the Irish Sea). Along the coast of Ireland there was a similar trend with reduced SFG within the Irish Sea region. SFG was generally low north of Duncannon and then improved north of Belfast. The poor water quality on both sides of the Irish Sea is consistent with the prevailing hydrodynamics and the spatial distribution of contaminants associated with urban/ industrial development. The decline in SFG of mussels on both sides of the Irish Sea was associated with a general increase in contaminant levels in the mussels. Certain contaminants, including PAHs, TBT, sigmaDDT, Dieldrin, gamma-HCH, PCBs, and a few of the metals (Cd, Se, Ag, Pb), showed elevated concentrations. Many of these contaminants were particularly elevated in the coastal margins of Liverpool Bay, Morecambe Bay and Dublin Bay. A quantitative toxicological interpretation (QTI) of the combined tissue residue chemistry and SFG measurements indicated that at the majority of coastal sites, c. 50 to > 80% of the observed decline in SFG was due to PAHs as a result of fossil fuel combustion and oil spills. TBT levels were highest at major ports and harbours, but these concentrations only made a minor contribution to the overall reduction in SFG. At no sites were individual metals accumulated to concentrations that could cause a significant effect on SFG. The study identified many sites where the observed reduction in SFG was far greater than predicted from the limited number of chemical contaminants analysed, thus indicating the presence of additional 'unknown toxicants'. Sewage (containing domestic, agricultural and industrial components) appears to be an important contributor to reduced SFG and linear alkylbenzenes (LABs) and As may provide suitable 'sewage markers'. There was a highly significant positive correlation between SFG and As (P < 0.001). This relationship may be due to reduced As uptake by algal food material and mussels at sites with elevated P04 concentrations (e.g. at sites with sewage inputs). Phosphate is a known competitive inhibitor of As accumulation, at least in algae. The results highlight that further research is required on 'sewage markers' in mussels. The SFG approach therefore provides a rapid, cost-effective and quantitative measure of pollution impact, as well as a means of identifying the causes through a QTI of tissue contaminants levels. It also serves to identify the presence of unidentified toxicants and areas that require further study. 相似文献
The Egyptian older and younger granitic rocks emplaced during pre- and post-collision stages of Neoproterozoic Pan-African orogeny, respectively, are widely distributed in the southern Sinai Peninsula, constituting 70% of the basement outcrops. The Wadi El-Akhder, southwestern Sinai, is a mountainous terrain exposing two granitoid suites, namely the Wadi El-Akhder Older Granites (AOG) and the Homra Younger Granites (HYG). The AOG (granodiorites with subordinate tonalite compositions) have geochemical characteristics of medium-K calc-alkaline, metaluminous to mildly peraluminous granitoids formed in an island-arc environment, which are conformable with well-known Egyptian older granitoids rocks, whereas the HYG display calc-alkaline to slightly alkaline nature, peraluminous syeno-, monzogranites and alkali feldspar granites matching well those of the Egyptian younger granites. With respect to the AOG granitoids, the HYG granites contain lower Al2O3, FeO*, MgO, MnO, CaO, TiO2, Sr, Ba, and V, but higher Na2O, K2O, Nb, Zr, Th, and Rb. The AOG are generally characterized by enrichment in LILE and LREE and depletion in HFSE relative to N-MORB values (e.g., negative Nb and Ta anomalies). The geochemical features of the AOG follow assimilation-fractional crystallization (AFC) trends indicative of extensive crustal contamination of magma derived from a mantle source. The chemical characteristics of the AOG are remarkably similar to those of subduction-related granitoids from the Arabian-Nubian Shield (ANS). The compositional variations from monzogranites through syenogranites to alkali feldspar granite within HYG could not be explained by fractional crystallization solely. Correlating the whole-rock composition of the HYG to melts generated by experimental dehydration melting of meta-sedimentary and magmatic rocks reveals that they appear to be derived by extended melting of psammitic and pelitic metasediments, which is similar to the most of younger granitic suites in the ANS. 相似文献
An unusual jaw found in a calcite nodule from Collishaw Point, Hornby Island, British Columbia (off the east coast of Vancouver Island) represents the first definitive pterosaur found in British Columbia, and the first istiodactylid from Canada. 相似文献
Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to 相似文献
Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR. 相似文献
Variation in glycogen concentration, condition index (CI) and filtration activity were measured in the bivalve Macoma balthica buried in sediment and experimentally exposed to cadmium (Cd). The stress due to elevated but sub-lethal concentrations (300 ppb Cd) affected the overall fitness of the organism as all parameters monitored responded significantly. Lower concentrations tested (10, 30 and 100 ppb) only induced a significant decrease in filtration activity, which may play a protective role, enabling the organism to slow down its metabolic activity and preserving the integrity of its reserves (reflected by stable CI and glycogen levels). Hence, the various endpoints selected show different thresholds. Our results also demonstrate that under high exposure, small individuals loose proportionally more glycogen per unit of weight than larger ones, thus confirming the higher sensitivity of small individuals to metal contamination. Furthermore, exposure to intermediate concentration (30 ppb) seems to be beneficial to the small individuals as indicated by their high CI values compared to the control. These results showed thus that non-sigmoidal concentration-response relationship and sizes of individuals should be considered in monitoring programmes and risk assessment. 相似文献