首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   7篇
  国内免费   7篇
测绘学   4篇
大气科学   26篇
地球物理   52篇
地质学   80篇
海洋学   23篇
天文学   12篇
综合类   4篇
自然地理   8篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   8篇
  2014年   16篇
  2013年   6篇
  2012年   11篇
  2011年   22篇
  2010年   9篇
  2009年   12篇
  2008年   14篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1917年   2篇
  1916年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
101.
The crystal structure of synthetic stepanovite, Na[Mg(H2O)6][Fe(C2O4)3]·3H2O, and zhemchuzhnikovite, Na[Mg(H2O)6][Al0.55Fe0.45(C2O4)3]·3H2O, has been determined by single-crystal X-ray diffraction methods. The compounds are isotypic to each other and to the previously reported Na[Mg(H2O)6][M(C2O4)3]·3H2O (M: Cr, Al). They crystallize in the trigonal P3c1 space group with Z = 6 molecules per unit cell and (hexagonal axes) a = 17.0483(4), c = 12.4218(4) Å for the iron compound, and a = 16.8852(5), c = 12.5368(5) Å for the Al/Fe solid solution. Comparison of our crystallographic results with previous X-ray diffraction and chemical data of type stepanovite and zhemchuzhnikovite minerals provides compelling evidence that these natural materials possess the same crystal and molecular structure as their synthetic counterparts. It is shown that the originally reported unit cell for stepanovite represents a pronounced sub-cell and that the correct unit cell and space group are based on weak superstructure reflections. The infrared and Raman spectra of both synthetic analogs were also recorded and are briefly discussed.  相似文献   
102.
Predictions of the Madden?CJulian oscillation (MJO) are assessed using a 10-member ensemble of hindcasts from POAMA, the Australian Bureau of Meteorology coupled ocean?Catmosphere seasonal prediction system. The ensemble of hindcasts was initialised from observed atmosphere and ocean initial conditions on the first of each month during 1980?C2006. The MJO is diagnosed using the Wheeler-Hendon Real-time Multivariate MJO (RMM) index, which involves projection of daily data onto the leading pair of eigenmodes from an analysis of zonal winds at 200 and 850?hPa and outgoing longwave radiation (OLR) averaged about the equator. Forecasts of the two component (RMM1 and RMM2) index are quantitatively compared with observed behaviour derived from NCEP reanalyses and satellite OLR using the bivariate correlation skill, root-mean-square error (RMSE), and measures of the MJO amplitude and phase error. Comparison is also made with a simple vector autoregressive (VAR) prediction model of RMM as a benchmark. Using the full hindcast set, we find that the MJO can be predicted with the POAMA ensemble out to about 21?days as measured by the bivariate correlation exceeding 0.5 and the bivariate RMSE remaining below ~1.4 (which is the value for a climatological forecast). The VAR model, by comparison, drops to a correlation of 0.5 by about 12?days. The prediction limit from POAMA increases by less than 2?days for times when the MJO has large initial amplitude, and has little sensitivity to the initial phase of the MJO. The VAR model, on the other hand, shows a somewhat larger increase in skill for times of strong MJO variability and has greater sensitivity to initial phase, with lower skill for times when MJO convection is developing in the Indian Ocean. The sensitivity to season is, however, greater for POAMA, with maximum skill occurring in the December?CJanuary?CFebruary season and minimum skill in June?CJuly?CAugust. Examination of the MJO amplitudes shows that individual POAMA members have slightly above observed amplitude after a spin-up of about 10?days, whereas examination of the MJO phase error reveals that the model has a consistent tendency to propagate the MJO slightly slower than observed. Finally, an estimate of potential predictability of the MJO in POAMA hindcasts suggests that actual MJO prediction skill may be further improved through continued development of the dynamical prediction system.  相似文献   
103.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at 38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between 306 and 286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to 250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   
104.
The effect of micronized frustules of fossil diatoms (DS) on tumor growth and survival of mice receiving an ip inoculations of either a spontaneous lymphoblastic leukemia (LB) or P-388 lymphocytic leukemia (P-388) was investigated. A multi-dose study was designed, mice receiving 1000, 100, 10 and 1 μg of a suspension of DS, either ip or sc on day 1, 4 and 9 after tumor inoculation. With LB the best results were observed when DS were inoculated by the ip route, no effect being observed with the sc route. The best therapeutic effect resulted with 1 μg DS: 33% of the mice were alive 24 days after tumor inoculation, when all the controls had died. With P-388, only a temporary effect with the 10 μg DS dose was observed. In no case was it possible to prolong survival. It is concluded that at low doses of DS therapeutic effect is greatest, while toxicity due to SiO2 is greatly reduced.  相似文献   
105.
The Lince–Estefanía stratabound copper deposit in the Michilla district is one of the most important deposits in the Coastal Cordillera of northern Chile and is one of the most representative of this type of deposit. Chalcocite and bornite characterize the main stage of hypogene copper sulfide mineralization. Rhenium and osmium isotopes are used here to constrain the age of hypogene mineralization and the source of osmium contained in these ore minerals. A Re–Os isochron yielded an age of 160±16 Ma (2σ), with an associated initial 187Os/188Os ratio of 1.06±0.09 (mean square of weighted deviates=1.8). This age is consistent with available geochronological data from volcanic rocks that host the mineralization and associated alteration phases. The high initial 187Os/188Os ratio indicates a lower crustal component for the source of Os and, by inference, the Cu sulfides that contain this Os. Late hematite occurs as an isolated phase or, more commonly, is associated with the chalcocite–bornite and supergene chalcocite–covellite associations. Analyses performed on pure hematite indicate a disturbance of the Re–Os system, and hence, this mineral phase is not useful as a Re–Os geochronometer.  相似文献   
106.
Over 400 ion microprobe U-Pb isotopic ages measured for zircons extracted from 24 geothermal wells that penetrate the Geysers Plutonic complex (GPC) allow us to conclude that the entire known extent of the GPC crystallized during the early Pleistocene. Nine samples of the microgranite porphyry that forms the shallow cupola (100-1,500 m below sea-level, mbsl) of the GPC yield the oldest model U-Pb age (1.75 ± 0.01 Ma after correction for initial U series disequilibrium; errors 1σ). Twelve samples from the main intrusive phase (orthopyroxene-biotite granite) present at depths >1,250 mbsl define a crystallization age of 1.27 ± 0.01 Ma. This coincides with the age determined for a structurally and compositionally distinct body of granodiorite (1.25 ± 0.01 Ma; N = 5 samples) that is intruded over a similar depth range. Two petrographically distinct varieties of orthopyroxene-biotite granite yield ages of 1.46 ± 0.03 (GPC21-6000) and 1.16 ± 0.02 Ma (CA5636 74F 21; three samples). U-Pb zircon ages for dikes intruded in metagraywacke country-rocks overlap with those obtained from the main body of the GPC and include the youngest material identified (dike sample NEGU2 ST1-7700: 1.11 ± 0.03 Ma). Overall, the U-Pb results demonstrate that the main body of the GPC (∼300 km3) was emplaced and crystallized within the upper crust over a short time interval (0.2 Ma) that overlaps with zircon crystallization ages of overlying silicic volcanic units.  相似文献   
107.
108.
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under “normal” or non-El Niño (1993–94) and El Niño conditions (1997–98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°–43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°–43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.  相似文献   
109.
110.
During the summers of 2003 to 2006 sprites were observed over thunderstorms in France by cameras on mountain tops in Southern France. The observations were part of a larger coordinated effort, the EuroSprite campaigns, with data collected simultaneously from other sources including the French radar network for precipitation structure, Meteosat with images of cloud top temperature and the Météorage network for detection of cloud-to-ground (CG) flash activity. In this paper two storms are analyzed, each producing 27 sprite events. Both storms were identified as Mesoscale Convective Systems (MCS) with a trailing stratiform configuration (ST) and reaching a maximum cloud area of ~ 120,000 km2. Most of the sprites were produced while the stratiform area was clearly developed and during periods of substantial increase of rainfall in regions with radar reflectivity between 30 and 40 dBZ. The sprite-producing periods followed a maximum in the CG lightning activity and were characterized by a low CG flash rate with a high proportion of + CG flashes, typically around 50%. All sprites were associated with + CGs except one which was observed after a − CG as detected by the Météorage network. This − CG was estimated to have − 800 C km charge moment change. The peak current of sprite-producing + CG (SP + CG) flashes was twice the average value of + CGs and close to 60 kA with little variation between the periods of sprite activity. The SP + CG flashes were further characterized by short time intervals before a subsequent CG flash (median value < 0.5 s) and with clusters of several CG flashes which suggest that SP + CG flashes often are part of multi-CG flash processes. One case of a lightning process associated with a sprite consisted of 7 CG flashes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号