全文获取类型
收费全文 | 267篇 |
免费 | 9篇 |
国内免费 | 7篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 30篇 |
地球物理 | 76篇 |
地质学 | 88篇 |
海洋学 | 36篇 |
天文学 | 36篇 |
综合类 | 4篇 |
自然地理 | 9篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 7篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 8篇 |
2016年 | 16篇 |
2015年 | 8篇 |
2014年 | 18篇 |
2013年 | 8篇 |
2012年 | 13篇 |
2011年 | 25篇 |
2010年 | 11篇 |
2009年 | 18篇 |
2008年 | 13篇 |
2007年 | 11篇 |
2006年 | 7篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 7篇 |
2002年 | 7篇 |
2001年 | 4篇 |
2000年 | 5篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1990年 | 2篇 |
1983年 | 4篇 |
1981年 | 2篇 |
1976年 | 1篇 |
1975年 | 3篇 |
1974年 | 4篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1971年 | 2篇 |
1970年 | 5篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1964年 | 1篇 |
1963年 | 1篇 |
1962年 | 2篇 |
1961年 | 1篇 |
1960年 | 1篇 |
1959年 | 1篇 |
1958年 | 2篇 |
1957年 | 2篇 |
1917年 | 2篇 |
1916年 | 1篇 |
排序方式: 共有283条查询结果,搜索用时 15 毫秒
41.
Oscar Tietze 《International Journal of Earth Sciences》1916,7(3-4):110-122
Ohne Zusammenfassung 相似文献
42.
Organic pollutants associated with macromolecular soil organic matter: Mode of binding 总被引:2,自引:0,他引:2
H. H. Richnow R. Seifert J. Hefter M. Link W. Francke G. Schaefer W. Michaelis 《Organic Geochemistry》1997,26(11-12)
A study of ether-linked moieties in macromolecular bound residues of polycyclic aromatic hydrocarbons (PAH) generated in bioremediation experiments was performed using high temperature hydrolysis degradation with subsequent analysis of the products by GC-MS. This hydrolysis reaction was specifically designed to cleave ether bonds including relatively stable diarylether structures. Among the reaction products, aromatic alcohols representing typical microbiologically derived metabolites of PAH were found in addition to natural compounds. Thus, parts of the bound residues appeared to be linked within the macromolecular material by ether bonds. Model experiments with an oxidoreductase enzyme and aromatic alcohols indicate the formation of these ether bonds to be an enzyme-catalysed process. 相似文献
43.
Axel K Schmitt Marty Grove Oscar Lovera Mark Walters 《Geochimica et cosmochimica acta》2003,67(18):3423-3442
Combined U-Pb zircon and 40Ar/39Ar sanidine data from volcanic rocks within or adjacent to the Geysers geothermal reservoir constrain the timing of episodic eruption events and the pre-eruptive magma history. Zircon U-Pb concordia intercept model ages (corrected for initial 230Th disequilibrium) decrease as predicted from stratigraphic and regional geological relationships (1σ analytical error): 2.47 ± 0.04 Ma (rhyolite of Pine Mountain), 1.38 ± 0.01 Ma (rhyolite of Alder Creek), 1.33 ± 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 ± 0.03 Ma (dacite of Cobb Valley), and 0.94 ± 0.01 Ma (dacite of Tyler Valley). A significant (∼0.2-0.3 Ma) difference between these ages and sanidine 40Ar/39Ar ages measured for the same samples demonstrates that zircon crystallized well before eruption. Zircons U-Pb ages from the underlying main-phase Geysers Plutonic Complex (GPC) are indistinguishable from those of the Cobb Mountain volcanics. While this is in line with compositional evidence that the GPC fed the Cobb Mountain eruptions, the volcanic units conspicuously lack older (∼1.8 Ma) zircons from the shallowest part of the GPC. Discontinuous zircon age populations and compositional relationships in the volcanic and plutonic samples are incompatible with zircon residing in a single long-lived upper crustal magma chamber. Instead we favor a model in which zircons were recycled by remelting of just-solidified rocks during episodic injection of more mafic magmas. This is consistent with thermochronologic evidence that the GPC cooled below 350° C at the time the Cobb Mountain volcanics were erupted. 相似文献
44.
Oscar Perdomo 《Celestial Mechanics and Dynamical Astronomy》2017,129(1-2):89-104
We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, \(2 T=k\pi +\int _\Omega g\) where k is an integer, \(\Omega \) is the region enclosed by the periodic orbit and \(g:{\mathbb {R}}^2\rightarrow {\mathbb {R}}\) is a function that only depends on the constant C known as the Jacobian constant; it does not depend on \(\Omega \). This theorem has a Keplerian flavor in the sense that it relates the period with the space “swept” by the orbit. As an application we prove that there is a neighborhood around \(L_4\) such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for \(L_5\). 相似文献
45.
A cross-ecosystem comparison of spatial and temporal patterns of covariation in the recruitment of functionally analogous fish stocks 总被引:1,自引:1,他引:1
Bernard A. Megrey Jonathan A. Hare William T. Stockhausen Are Dommasnes Harald Gjster William Overholtz Sarah Gaichas Georg Skaret Jannike Falk-Petersen Jason S. Link Kevin D. Friedland 《Progress in Oceanography》2009,81(1-4):63
Temporal and spatial patterns of recruitment (R) and spawning stock biomass (S) variability were compared among functionally analogous species and similar feeding guilds from six marine ecosystems. Data were aggregated into four regions including the Gulf of Maine/Georges Bank, the Norwegian/Barents Seas, the eastern Bering Sea, and the Gulf of Alaska. Variability was characterized by calculating coefficients of variation and anomalies for three response variables: ln(R), ln(R/S), and stock–recruit model residuals. Patterns of synchrony and asynchrony in the response variables were examined among and between ecosystems, between- and within-ocean basins and among functionally analogous species groups using pair-wise correlation analysis corrected for within-time series autocorrelation, multivariate cross-correlation analyses and regime shift detectors. Time series trends in response variables showed consistent within basin similarities and consistent and coherent differences between the Atlantic and Pacific basin ecosystems. Regime shift detection algorithms identified two broad-scale regime shift time periods for the pelagic feeding guild (1972–1976 and 1999–2002) and possibly one for the benthic feeding guild (1999–2002). No spatial patterns in response variable coefficients of variation were observed. Results from multivariate cross-correlation analysis showed similar trends. The data suggest common external factors act in synchrony on stocks within ocean basins but temporal stock patterns, often of the same species or functional group, between basins change in opposition to each other. Basin-scale results (similar within but different between) suggest that the two geographically broad areas are connected by unknown mechanisms that, depending on the year, may influence the two basins in opposite ways. This work demonstrates that commonalities and synchronies in recruitment fluctuations can be found across geographically distant ecosystems but biophysical causes of the fluctuations remain difficult to identify. 相似文献
46.
Oscar M. Lovera Matthew T. Heizler T. Mark Harrison 《Contributions to Mineralogy and Petrology》1993,113(3):381-393
Viewing K-feldspars as containing a discrete distribution of diffusion domain sizes reconciles otherwise disconsonant features common in their 40Ar/39Ar age spectra and Arrhenius plots but raises a fundamental question. What are the features in K-feldspar that endow it with this behavior? We report here the results of two different kinds of experiments that help isolate the nature of the responsible diffusion properties. To assess the thermal stability of the diffusion domains during laboratory treatment, MH-10 K-feldspar was step-heated to 850°C, removed from the furnace and split. One split was reirradiated and the other returned to the furnace and completely degassed. Following re-irradiation, the original heating schedule was used to degas the second aliquot. Apart from the first 5% of gas released, the diffusion properties show little change relative to the original result but, it appears, the physical character of a portion of the smallest domain has been altered. Results of duplicate step-heating experiments of samples treated at 750°C, 950°C and 1100°C prior to irradiation are consistent with the conclusions of the double irradiation experiment. In a second series of experiments, sized aggregates of MH-10 K-feldspar were analyzed by the 40Ar/39Ar step-heating method. The resultant log(r/r o) plots reveal that the largest domain is annihilated when the particle size is reduced to about 50 μm. From this result we infer that the largest diffusion domain size is between 60 and about 130 μm in diameter. This estimate, together with knowledge of the relative domain size distribution obtained from modeling the log(r/r o) plot, sets the size of the smallest domain to be less than about 1 μm. Microstructural examination of MH-10 K-feldspar identifies sub-grain features that correspond in size to our independent estimates for the largest and smallest diffusion domains. These results strongly support the view that low-temperature K-feldspars contain a distribution of diffusion length scales that are well approximated as discrete domain sizes and that laboratory heating below the onset of melting does not significatly affect the ability to obtain thermal reconstructions from the 40Ar/39Ar systematics. 相似文献
47.
The simulation and prediction of extreme heat over Australia on intraseasonal timescales in association with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is assessed using the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA). The analysis is based on hindcasts over 1981–2010 and focuses on weeks 2 and 3 of the forecasts, i.e. beyond a typical weather forecast. POAMA simulates the observed increased probabilities of extreme heat during El Niño events, focussed over south eastern and southern Australia in SON and over northern Australia in DJF, and the decreased probabilities of extreme heat during La Niña events, although the magnitude of these relationships is smaller than observed. POAMA also captures the signal of increased probabilities of extreme heat during positive phases of the IOD across southern Australia in SON and over Western Australia in JJA, but again underestimates the strength of the relationship. Shortcomings in the simulation of extreme heat in association with ENSO and the IOD over southern Australia may be linked to deficiencies in the teleconnection with Indian Ocean SSTs. Forecast skill for intraseasonal episodes of extreme heat is assessed using the Symmetric Extremal Dependence Index. Skill is highest over northern Australia in MAM and JJA and over south-eastern and eastern Australia in JJA and SON, whereas skill is generally poor over south-west Western Australia. Results show there are windows of forecast opportunity related to the state of ENSO and the IOD, where the skill in predicting extreme temperatures over certain regions is increased. 相似文献
48.
Alexandre Forest Jean-Éric Tremblay Yves Gratton Johannie Martin Jonathan Gagnon Gérald Darnis Makoto Sampei Louis Fortier Mathieu Ardyna Michel Gosselin Hiroshi Hattori Dan Nguyen Roxane Maranger Dolors Vaqué Cèlia Marrasé Carlos Pedrós-Alió Amélie Sallon Christine Michel Colleen Kellogg Jody Deming Elizabeth Shadwick Helmuth Thomas Heike Link Philippe Archambault Dieter Piepenburg 《Progress in Oceanography》2011,91(4):410-436
Major pathways of biogenic carbon (C) flow are resolved for the planktonic food web of the flaw lead polynya system of the Amundsen Gulf (southeast Beaufort Sea, Arctic Ocean) in spring-summer 2008. This period was relevant to study the effect of climate change on Arctic marine ecosystems as it was characterized by unusually low ice cover and warm sea surface temperature. Our synthesis relied on a mass balance estimate of gross primary production (GPP) of 52.5 ± 12.5 g C m−2 calculated using the drawdown of nitrate and dissolved inorganic C, and a seasonal f-ratio of 0.64. Based on chlorophyll a biomass, we estimated that GPP was dominated by phytoplankton (93.6%) over ice algae (6.4%) and by large cells (>5 μm, 67.6%) over small cells (<5 μm, 32.4%). Ancillary in situ data on bacterial production, zooplankton biomass and respiration, herbivory, bacterivory, vertical particle fluxes, pools of particulate and dissolved organic carbon (POC, DOC), net community production (NCP), as well as selected variables from the literature were used to evaluate the fate of size-fractionated GPP in the ecosystem. The structure and functioning of the planktonic food web was elucidated through inverse analysis using the mean GPP and the 95% confidence limits of every other field measurement as lower and upper constraints. The model computed a net primary production of 49.2 g C m−2, which was directly channeled toward dominant calanoid copepods (i.e. Calanus hyperboreus 20%, Calanus glacialis 10%, and Metridia longa 10%), other mesozooplankton (12%), microzooplankton (14%), detrital POC (18%), and DOC (16%). Bacteria required 29.9 g C m−2, a demand met entirely by the DOC derived from local biological activities. The ultimate C outflow comprised respiration fluxes (82% of the initial GPP), a small sedimentation (3%), and a modest residual C flow (15%) resulting from NCP, dilution and accumulation. The sinking C flux at the model limit depth (395 m) supplied 60% of the estimated benthic C demand (2.8 g C m−2), suggesting that the benthos relied partly on other C sources within the bottom boundary layer to fuel its activity. In summary, our results illustrate that the ongoing decline in Arctic sea ice promotes the growth of pelagic communities in the Amundsen Gulf, which benefited from a ∼80% increase in GPP in spring-summer 2008 when compared to 2004 – a year of average ice conditions and relatively low GPP. However, 53% of the secondary production was generated within the microbial food web, the net ecological efficiency of zooplankton populations was not particularly high (13.4%), and the quantity of biogenic C available for trophic export remained low (6.6 g C m−2). Hence it is unlikely that the increase in lower food web productivity, such as the one observed in our study, could support new harvestable fishery resources in the offshore Beaufort Sea domain. 相似文献
49.
Oscar?LaurentEmail author Armin?Zeh Axel?Gerdes Arnaud?Villaros Katarzyna?Gros Ewa?S?aby 《Contributions to Mineralogy and Petrology》2017,172(9):80
In plutonic systems, magma mixing is often modelled by mass balance based on whole-rock geochemistry. However, magma mixing is a chaotic process and chemical equilibration is controlled by non-linear diffusive–advective processes unresolved by the study of bulk samples. Here we present textural observations, LA-(MC-)ICP-MS trace element and Sr–Nd isotopic data of accessory apatites and titanites from a hybrid granodiorite of the Neoarchean Matok pluton (South Africa), collected in a zone of conspicuous mixing between mafic and felsic magmas. Apatite grains mostly show a pronounced zoning in CL images, corresponding to abrupt changes in REE and HFSE concentrations recording their transfer through compositionally different melt domains during mixing. These grains crystallized early, at temperatures of 950–1000 °C. Titanite grains crystallized at temperatures of 820–900 °C (Zr-in-sphene thermometry). They show limited intra-grain chemical variations but huge inter-grain compositional scatter in REE and HFSE, pinpointing crystallization within a crystal mush, from isolated melt pockets having different composition from one another owing to incomplete chemical homogenization and variable Rayleigh fractionation. These chemical–textural characteristics, in combination with partitioning models and Polytopic Vector Analysis, point to “self-mixing” between co-genetic dioritic and granodioritic/granitic magmas. Both resulted from differentiation of mantle-derived mafic melts, showing that mixing does not necessarily involve magmas from contrasted (crust vs. mantle) sources. Systematic variations in εNd t (?4.5 to ?2.5) and 87Sr/86Sr(i) (0.703–0.707) of titanite and apatite grains/domains crystallized from the two magmas point to an isotopically inhomogeneous mantle source, which is not resolved by bulk-rock isotopic data. Interaction between the two magmas must have occurred at relatively high temperatures (ca. 900°C) so that their viscosity contrast remained low, allowing efficient mechanical mixing. Despite this, chemical homogenization was incomplete, as recorded by diffusive fractionation between REE–HFSE and Sr. Modelling thereof reveals that chemical exchange between the liquid phases of the two mixed magmas did not last more than a few tens to hundreds of years. The chemical equilibration between mixed magmas thus strongly depends on the considered elements and observational length scales. 相似文献
50.
Charles A. Stock Michael A. Alexander Nicholas A. Bond Keith M. Brander William W.L. Cheung Enrique N. Curchitser Thomas L. Delworth John P. Dunne Stephen M. Griffies Melissa A. Haltuch Jonathan A. Hare Anne B. Hollowed Patrick Lehodey Simon A. Levin Jason S. Link Kenneth A. Rose Ryan R. Rykaczewski Jorge L. Sarmiento Ronald J. Stouffer Franklin B. Schwing Francisco E. Werner 《Progress in Oceanography》2011,88(1-4):1-27
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models. 相似文献