首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   15篇
  国内免费   3篇
测绘学   1篇
大气科学   25篇
地球物理   85篇
地质学   81篇
海洋学   59篇
天文学   55篇
综合类   2篇
自然地理   24篇
  2021年   4篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2014年   13篇
  2013年   13篇
  2012年   9篇
  2011年   13篇
  2010年   23篇
  2009年   20篇
  2008年   12篇
  2007年   12篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   10篇
  2002年   13篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   9篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有332条查询结果,搜索用时 0 毫秒
201.
The effects of wellbore‐wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6‐m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15‐month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore‐wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering‐derived wellbores. Our results suggest that the wellbore‐wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore‐wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions.  相似文献   
202.
203.
This is the third in a series of reports on Japanese geographic research prepared in cooperation with the Association of Japanese Geographers (AJG). Like the two previous reports, which appeared in the August and November issues, it has been modified for the English-speaking readership of THE PROFESSIONAL GEOGRAPHER. However, unlike the previous articles, each of which aimed at providing data regarding Japanese research on specific geographic topics, this paper is intended to supply the reader with an inventory of those materials that will be needed for the conduct of research in Japan. —H. Jesse Walker, Member, U.S. National Committee, IGU.  相似文献   
204.
205.
206.
207.
208.
209.
Velocity as well as attenuation factorQ –1 ofP-wave in a dry granitic rock sample under uniaxial compressions were measured in the range of frequency between 100 kHz and 710 kHz by using the pulse transmission technique. Above the stress of 0.5 f , where f is the fracture stress, theP-wave velocity decreases with increasing axial stress, whereasQ –1 increases. Particularly, the change ofQ –1 is greater for high frequency than for low frequency. At a given stress level, the higher the frequency, the higher theP-wave velocity and the largerQ –1. This result means that the velocity decrease with increasing stress is smaller for higher frequency. Because of this frequency-dependence of velocity decrease, theP-wave in the rock under dilatant state shows dispersion. The body wave dispersion is more remarkable at higher stress, and is not found in a homogeneous material with no cracks. Thus the disperison is attributed to the generation of cracks. When the frequency-dependence ofQ –1 is approximated asf n in the present frequency range, the exponentn takes a value from 0.63 to 0.77.  相似文献   
210.
To clarify the effect of a surface regolith layer on the formation of craters in bedrock, we conducted impact-cratering experiments on two-layered targets composed of a basalt block covered with a mortar layer. A nylon projectile was impacted on the targets at velocities of 2 and 4 km s?1, and we investigated the crater size formed on the basalt. The crater size decreased with increased mortar thickness and decreased projectile mass and impact velocity. The normalized crater volume, πV, of all the data was successfully scaled by the following exponential equation with a reduction length λ0: πV=b0πY-b1exp(-λ/λ0), where λ is the normalized thickness T/Lp, T and Lp are the mortar thickness and the projectile length, respectively, b0 and b1 are fitted parameters obtained for a homogeneous basalt target, 10?2.7±0.7 and ?1.4 ± 0.3, respectively, and λ0 is obtained to be 0.38 ± 0.03. This empirical equation showing the effect of the mortar layer was physically explained by an improved non-dimensional scaling parameter, πY1, defined by πY1=Y/(ρtup2), where up was the particle velocity of the mortar layer at the boundary between the mortar and the basalt. We performed the impact experiments to obtain the attenuation rate of the particle velocity in the mortar layer and derived the empirical equation of upvi=0.50exp-λ1.03, where vi is the impact velocity of the projectile. We propose a simple model for the crater formation on the basalt block that the surface mortar layer with the impact velocity of up collides on the surface of the basalt block, and we confirmed that this model could reproduce our empirical equation showing the effect of the surface layer on the crater volume of basalt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号