首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   6篇
  国内免费   2篇
测绘学   6篇
大气科学   8篇
地球物理   49篇
地质学   121篇
海洋学   17篇
天文学   7篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   11篇
  2013年   24篇
  2012年   14篇
  2011年   14篇
  2010年   8篇
  2009年   18篇
  2008年   9篇
  2007年   18篇
  2006年   11篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1940年   1篇
  1934年   3篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
211.
We performed quasi‐two‐dimensional flow through laboratory experiments to study the effect of a coarse‐material inclusion, located in the proximity of the water table, on flow and oxygen transfer in the capillary fringe. The experiments investigate different phases of mass transfer from the unsaturated zone to anoxic groundwater under both steady‐state and transient flow conditions, the latter obtained by fluctuating the water table. Monitoring of flow and transport in the different experimental phases was performed by visual inspection of the complex flow field using a dye tracer solution, measurement of oxygen profiles across the capillary fringe, and determination of oxygen fluxes in the effluent of the flow‐through chamber. Our results show significant effects of the coarse‐material inclusion on oxygen transfer during the different phases of the experiments. At steady state, the oxygen flux across the unsaturated/saturated interface was considerably enhanced due to flow focusing in the fully water‐saturated coarse‐material inclusion. During drainage, a zone of higher water saturation formed in the fine material overlying the coarse lens. The entrapped oxygen‐rich aqueous phase contributed to the total amount of oxygen supplied to the system when the water table was raised back to its initial level. In case of imbibition, pronounced air entrapment occurred in the coarse lens, causing oxygen to partition between the aqueous and gaseous phases. The oxygen mass supplied to the anoxic groundwater following the imbibition event was found to be remarkably higher (approximately seven times) in the heterogeneous system compared with a similar experiment performed in a homogeneous porous medium.  相似文献   
212.
With most existing methods, transverse dispersion coefficients are difficult to determine. We present a new, simple, and robust approach based on steady-state transport of a reacting agent, introduced over a certain height into the porous medium of interest. The agent reacts with compounds in the ambient water. In our application, we use an alkaline solution injected into acidic ambient water. Threshold values of pH are visualized by adding standard pH indicators. Since aqueous-phase acid-base reactions can be considered practically instantaneous and the only process leading to mixing of the reactants is transverse dispersion, the length of the plume is controlled by the ratio of transverse dispersion to advection. We use existing closed-form expressions for multidimensional steady-state transport of conservative compounds in order to evaluate the concentration distributions of the reacting compounds. Based on these results, we derive an easy-to-use expression for the length of the reactive plume; it is proportional to the injection height squared, times the velocity, and inversely proportional to the transverse dispersion coefficient. Solving this expression for the transverse dispersion coefficient, we can estimate its value from the length of the alkaline plume. We apply the method to two experimental setups of different dimension. The computed transverse dispersion coefficients are rather small. We conclude that at slow but realistic ground water velocities, the contribution of effective molecular diffusion to transverse dispersion cannot be neglected. This results in plume lengths that increase with increasing velocity.  相似文献   
213.
International Journal of Earth Sciences - LA-ICP-MS U–Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia,...  相似文献   
214.
Early diagenesis affects the distribution of solutes and minerals in unconsolidated sediments. The investigation of diagenesis is critical to understanding the geochemical transformation and benthic fluxes of elements. During the cruise mission SO-177 in 2004, gravity coring samples were recovered in the Haiyang 4 Area of the northern slope of the South China Sea (SCS). The geochemical concentrations in interstitial water were determined onboard. The 1D C.CANDI reactive transport software was used to model the early diagenesis processes at four sites: 56-GC-3, 70-GC-9, 94-GC-11, and 118-GC-13. All of the simulations reproduced concentration profiles that matched the measurements with the implemented geochemical reactions. The degradation of organic carbon and anaerobic oxidation of methane (AOM) primarily determine the distribution of solutes in the working area. The degradation is active in the top 150 cm, and AOM is vigorous at depths below 200 cm. The local advective flux, sediment rate, and kinetic reaction constants of organic matter, methane and sulfate were calibrated based on the existing concentrations of pore water solutes. Geochemical reactions in this area occur in considerably deeper layers compared to depths cited in the literature. The model results provide evidence for the existence of deep hydrocarbon reservoirs that provide methane to the upper sediments.  相似文献   
215.
Iron isotopes were used to investigate iron transformation processes during an in situ field experiment for removal of dissolved Fe from reduced groundwater. This experiment provided a unique setting for exploring Fe isotope fractionation in a natural system. Oxygen-containing water was injected at a test well into an aquifer containing Fe(II)-rich reduced water, leading to oxidation of Fe(II) and precipitation of Fe(III)(hydr)oxides. Subsequently, groundwater was extracted from the same well over a time period much longer than the injection time. Since the surrounding water is rich in Fe(II), the Fe(II) concentration in the extracted water increased over time. The increase was strongly retarded in comparison to a conservative tracer added to the injected solution, indicating that adsorption of Fe(II) onto the newly formed Fe(III)(hydr)oxides occurred. A series of injection-extraction (push-pull) cycles were performed at the same well. The δ57Fe/54Fe of pre-experiment background groundwater (−0.57 ± 0.17 ‰) was lighter than the sediment leach of Fe(III) (−0.24 ± 0.08 ‰), probably due to slight fractionation (only ∼0.3 ‰) during microbial mediated reductive dissolution of Fe(III)(hydr)oxides present in the aquifer. During the experiment, Fe(II) was adsorbed from native groundwater drawn into the oxidized zone and onto Fe(III)(hydr)oxides producing a very light groundwater component with δ57Fe/54Fe as low as −4 ‰, indicating that heavier Fe(II) is preferentially adsorbed to the newly formed Fe(III)(hydr)oxides surfaces. Iron concentrations increased with time of extraction, and δ57Fe/54Fe linearly correlated with Fe concentrations (R2 = 0.95). This pattern was reproducible over five individual cycles, indicating that the same process occurs during repeated injection/extraction cycles. We present a reactive transport model to explain the observed abiotic fractionation due to adsorption of Fe(II) on Fe(III)(hydr)oxides. The fractionation is probably caused by isotopic differences in the equilibrium sorption constants of the various isotopes (Kads) and not by sorption kinetics. A fractionation factor α57/54 of 1.001 fits the observed fractionation.  相似文献   
216.
High-levels of microplastic pollution in a large,remote, mountain lake   总被引:5,自引:0,他引:5  
Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km−2, Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics.  相似文献   
217.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号