首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
大气科学   2篇
地球物理   10篇
地质学   11篇
海洋学   2篇
天文学   14篇
自然地理   1篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   8篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1997年   3篇
  1979年   1篇
排序方式: 共有40条查询结果,搜索用时 281 毫秒
11.
We synthesize variability and trends in multiple analyses of Antarctic near-surface temperature representing several independent source datasets and spatially complete reconstructions, and place these into the broader context of the behavior of other components of the climate system during the past 30–50?years. Along with an annual-mean trend during the past 50?years of about 0.1°C/decade averaged over Antarctica, there is a distinct seasonality to the trends, with insignificant change (and even some cooling) in austral summer and autumn in East Antarctica, contrasting with warming in austral winter and spring. Apart from the Peninsula, the seasonal warming is largest and most significant in West Antarctica in the austral spring since the late 1970s. Concurrent trends in sea ice are independent evidence of the observed warming over West Antarctic, with the decrease in sea ice area in the Amundsen and Bellingshausen Seas congruent with at least 50% of the inland warming of West Antarctica. Trends in near surface winds and geopotential heights over the high-latitude South Pacific are consistent with a role for atmospheric forcing of the sea ice and air temperature anomalies. Most of the circulation trend projects onto the two Pacific South American (PSA) modes of atmospheric circulation variability, while the Southern Annular Mode lacks a positive trend in spring that would otherwise cause a cooling tendency. The largest circulation trend is associated with the PSA-1 mode, a wave-train extending from the tropics to the high Southern latitudes. The PSA-1 mode is significantly correlated with SSTs in the southwestern tropical and subtropical Pacific. The increased SSTs in this region, together with the observed increase in rainfall, suggest that anomalous deep convection has strengthened or increased the occurrence of the Rossby wave-train associated with PSA-1. This hypothesis is supported by results from two ensembles of SST-forced atmospheric general circulation model simulations. Finally, the implications of the seasonality, timing, and spatial patterns of Antarctic temperature trends with respect to interpreting the relative roles of stratospheric ozone depletion, SSTs and increased atmospheric concentrations of greenhouse gasses are discussed.  相似文献   
12.
During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.  相似文献   
13.
14.
The mechanism and rate of hydration of rhyolitic glass during weathering were studied. Doubly polished thin sections of two rhyolites with different duration of weathering (Ohsawa lava: 26,000 yr, Awanomikoto lava: 52,000 yr) were prepared. Optical microscope observation showed that altered layers had developed along the glass surfaces. IR spectral line profile analysis was conducted on the glass sections from the surface to the interior for a length of 250 μm and the contents of molecular H2O (H2Om), OH species (OH) and total water (H2Ot) were determined. The diffusion profile of H2Om in Ohsawa lava extends beyond the layer observed by optical microscope. The content of H2Om in the hydrated region is much higher than that of OH species. Thus, the reaction from H2Om to OH appears to be little and H2Om is the dominant water species moving into the glass during weathering. Based on the concentration profiles, the diffusion coefficients of H2Om(DH2Om) and H2Ot(DH2Ot) were determined to be 2.8 × 10−10 and 3.4 × 10−10 μm2 s−1 for Ohsawa lava, and 5.2 × 10−11 and 4.1 × 10−11 μm2 s−1 for Awanomikoto lava, respectively. The obtained DH2Om during weathering are more than 2-3 orders of magnitude larger than the diffusion coefficient at ∼20 °C that is extrapolated from the diffusivity data for >400 °C. This might suggest that the mechanism of water transport is different at weathering conditions and >400 °C.  相似文献   
15.
Detailed quantitative cathodoluminescence (CL) imaging analysis was carried out for radiation-damage halos observed by CL (CL halo) created in natural quartz by implantation of 4 MeV He+ ions. The band of CL halo was approximately 14 μm in width and was constant for any He+ ion dose. The width of the halo is consistent with the theoretical range of 4He ions in quartz. A quantitative response of CL intensity to He+ ion dose was obtained, leading to the application of CL halos to geodosimetrical use. The CL intensity increases exponentially in the luminescent band from the implantation surface to the inside, until it reaches a maximum at 14 μm depth, with a rapid decrease beyond this point. This result is as predicted by Bragg's law, although we find some differences between the CL intensity and the theoretical stopping power.  相似文献   
16.
Sakhalin Island straddles an active plate boundary between the Okhotsk and Eurasian plates. South of Sakhalin, this plate boundary is illuminated by a series of Mw 7–8 earthquakes along the eastern margin of the Sea of Japan. Although this plate boundary is considered to extend onshore along the length of Sakhalin, the location and convergence rate of the plate boundary had been poorly constrained. We mapped north-trending active faults along the western margin of the Poronaysk Lowland in central Sakhalin based on aerial photograph interpretation and field observations. The active faults are located east of and parallel to the Tym–Poronaysk fault, a terrane boundary between Upper Cretaceous and Neogene strata; the active faults appear to have reactivated the terrane boundary at depth in Quaternary time. The total length of the active fault zone on land is about 140 km. Tectonic geomorphic features such as east-facing monoclinal and fault scarps, back-tilted fluvial terraces, and numerous secondary faults suggest that the faults are west-dipping reverse faults. Assuming the most widely developed geomorphic surface in the study area formed during the last glacial maximum at about 20 ka based on similarities of geomorphic features with those in Hokkaido Island, we obtain a vertical component of slip rate of 0.9–1.4 mm/year. Using the fault dip of 30–60°W observed at an outcrop and trench walls, a net slip rate of 1.0–2.8 mm/year is obtained. The upper bound of the estimate is close to a convergence rate across the Tym–Poronaysk fault based on GPS measurements. A trenching study across the fault zone dated the most recent faulting event at 3500–4000 years ago. The net slip associated with this event is estimated at about 4.5 m. Since the last faulting event, a minimum of 3.5 m of strain, close to the strain released during the last event, has accumulated along the central portion of the active strand of the Tym–Poronaysk fault.  相似文献   
17.
Based on both major and trace element chemistry, the occurrence of the intergranular component in mantle-derived xenoliths from far eastern Russia has been constrained. Whole-rock trace element measurements of one xenolith show apparent negative anomalies in Ce, Th, and high field strength elements on normalized trace element patterns. The trace element pattern of the whole rock differs from those of constituent minerals, indicating that the anomalies in the whole rock are attributable to the presence of an intergranular component. That assumption was confirmed using in situ analysis of trace elements in the intergranular substance and melt inclusion using laser ablation inductively coupled plasma–mass spectrometry. Both the intergranular component and the melt inclusions have identical trace element patterns, which mean that these materials are a cognate metasomatizing agent. The anomalies are regarded as mantle metasomatism related to an aqueous fluid. Hydrous minerals were observed on the wall of the melt inclusions using micro-Raman spectroscopy, indicating that the melt inclusions contained a large amount of water. Thus, this study reveals a trace element composition of a hydrous metasomatizing agent in the mantle.  相似文献   
18.
We describe the calibration, measurements and data reduction, ofthe dark current of the ISOCAM/LW detector. We point-out theexistence of two significant drifts of the LW dark-current, onethroughout the ISO mission, on a timescale of days, another within each single revolution, on a timescale of hours. We alsoshow the existence of a dependence of the dark current on thetemperature of the ISOCAM detector.By characterizing all these effects through polynomial fittings,we build a model for the LW calibration dark, that depends onthe epoch of observation (parametrized with the revolutionnumber and the time elapsed in that given revolution since theactivation) and on the temperature of the ISOCAM detector. Themodel parameters are tuned for each of ISOCAM/LW pixel.We show that the modelling is very effective in taking intoaccount the dark-current variations and allows a much cleanerdark subtraction than using a brute average of severalcalibration dark images.The residuals of the LW model-dark subtraction are, on average,similar to the pre-launch expectation.  相似文献   
19.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   
20.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号