首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  国内免费   6篇
测绘学   3篇
大气科学   2篇
地球物理   5篇
地质学   32篇
海洋学   6篇
天文学   7篇
综合类   1篇
自然地理   1篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
31.
Full waveform inversion aims to use all information provided by seismic data to deliver high-resolution models of subsurface parameters. However, multiparameter full waveform inversion suffers from an inherent trade-off between parameters and from ill-posedness due to the highly non-linear nature of full waveform inversion. Also, the models recovered using elastic full waveform inversion are subject to local minima if the initial models are far from the optimal solution. In addition, an objective function purely based on the misfit between recorded and modelled data may honour the seismic data, but disregard the geological context. Hence, the inverted models may be geologically inconsistent, and not represent feasible lithological units. We propose that all the aforementioned difficulties can be alleviated by explicitly incorporating petrophysical information into the inversion through a penalty function based on multiple probability density functions, where each probability density function represents a different lithology with distinct properties. We treat lithological units as clusters and use unsupervised K-means clustering to separate the petrophysical information into different units of distinct lithologies that are not easily distinguishable. Through several synthetic examples, we demonstrate that the proposed framework leads full waveform inversion to elastic models that are superior to models obtained either without incorporating petrophysical information, or with a probabilistic penalty function based on a single probability density function.  相似文献   
32.
In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na?+?K over Ca?+?Mg. HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area.  相似文献   
33.
This paper focuses on the public participation in environmental planning. After the decade for inaccessible information related to the decision taken, actually, the program of public participation is the reference of all the decision making process. However, there are some factors that limit this process, such as poverty, illiteracy, ignorance and often the social inequality. Therefore, this study focuses first on the benefits of public participation in environmental planning, then the involvement of the local population, and finally the decision making access using a case study of Madagascar.  相似文献   
34.
With advancing climate change there is a growing need to include short-lived climate forcings in cost-efficient mitigation strategies to achieve international climate policy targets. Tools are required to compare the climate impact of perturbations with distinctively different atmospheric lifetimes and atmospheric properties. We present a generic approach for relating the climate effect of short-lived climate forcers (SLCF) to that of CO2 emissions. We distinguish between three alternative types of metric-based factors that can be used to derive CO2 equivalences for SLCF: based on forcing, activity and fossil fuel consumption. We derive numerical values for a wide range of parameter assumptions and apply the resulting generalised approach to the practical example of aviation-induced cloudiness. The evaluation of CO2 equivalences for SLCF tends to be more sensitive to SLCF specific physical uncertainties and the normative choice of a discount rate than to the choice of a physical or economic metric approach. The ability of physical metrics to approximate economic-based metrics alters with changing atmospheric concentration levels and trends. Under reference conditions, physical CO2 equivalences for SLCF provide sufficient proxies for economic ones. The latter, however, allow detailed insight into structural uncertainties. They provide CO2 equivalences for SLCF in short term strategies in the face of failing climate policies, and a temporal evolution of CO2 equivalences over time that is noticeably better in line with cost-efficient climate stabilisation.  相似文献   
35.
Present study examined phosphorus dynamics through delineation of source as well as availability of phosphorus and its fractionation within the intertidal sediments of Pichavaram mangrove ecosystem. Twelve sediment samples and two cores were collected from the mangrove forest along with estuarine area (Vellar-Coleroon) during January 2005. Sediments were analyzed for total phosphorus and its fractionation using operationally defined chemical sequential extraction scheme (SEDEX). Dissolved phosphorus (in water) and total phosphorus (in sediments) concentrations were high in the Vellar region of Pichavaram mangrove area due to pollution load from nearby villages and agricultural fields. However, the spatial variation in dissolved phosphorus were insignificant (at significance level = 0.05). The results for the phosphorus fractionation (post-tsunami) were compared with earlier studies (pre-tsunami). It was observed that all phosphorus fractions (except adsorbed-phosphorus) showed a highly significant (at significance level = 0.05) increase in concentration after the tsunami event. There was significant decrease in the adsorbed phosphorus concentration as a result of tsunami. The changes were more pronounced for organic phosphorus which increased by almost twofold following the event. These variations were attributed to change in salinity, increase in dissolved oxygen as well as the retreat of tsunami water carrying the waste load. The vertical distribution of phosphorus through core sediments showed that mixing after tsunami had altered the different phosphorus fraction and its availability. Overall, the study indicated that the fluvial weathering along with litter degradation and anthropogenic sources controlled the biogeochemistry of phosphorus in this mangrove ecosystem. Observed changes in the concentrations are a result of altered physico-chemical characteristics caused by tsunami.  相似文献   
36.
Abstract We described lunar meteorite Dhofar 026 (Cohen et al. 2004) and interpreted this rock as a strongly shocked granulitic breccia (or fragmental breccia consisting almost entirely of granulitic‐breccia clasts) that was partially melted by post‐shock heating. Warren et al. (2005) objected to many aspects of our interpretation: they were uncertain whether or not the bulk rock had been shocked; they disputed our identification of the precursor as granulitic breccia; and they suggested that mafic, igneous‐textured globules within the breccia, which we proposed were melted by post‐shock heating, are clasts with relict textures. The major evidence for shock of the bulk rock is the fact that the plagioclase in the lithologic domains that make up 80–90% of the rock is devitrified maskelynite. The major evidence for a granulitic‐breccia precursor is the texture of the olivine‐plagioclase domain that constitutes 40—45% of the rock; Warren et al. apparently overlooked or ignored this lithology. Textures of the mafic, igneous‐textured globules, and especially of the vesicles they contain, demonstrate that these bodies were melted and crystallized in situ. Warren et al. suggested that the rock might have originally been a regolith breccia, but the textural homogeneity of the rock and the absence of solar wind—derived noble gases preclude a regolith‐breccia precursor. Warren et al. classified the rock as an impact‐melt breccia, but they did not identify any fraction that was impact melt.  相似文献   
37.
38.
The present study aims at assessing water quality of river Yamuna in one of the world’s most polluted and populated megacities, Delhi. Conductivity, salinity and sodium content were within the permissible categories. Chloride concentration exceeded acceptable levels of drinking water guidelines. Water quality was poor at all locations with respect to heavy metal contamination, especially along the lower section of the Delhi stretch. Heavy metal concentrations were manifold higher than the acceptable limits of drinking water according to the BIS guidelines and reached ~29, 4.9, 10, 31, 27, 83, 7.3 and 27 times higher, respectively, for metals aluminum, copper, chromium, cadmium, iron, lead, manganese and nickel. The Najafgarh and the Shahdara drains are major point sources. Low oxidation–reduction potential reflected high organic loads and traces of eutrophication together with significant levels of nitrate and total phosphate. Discharges from agriculture, sewage and power plants could be important sources of high metal concentration. This calls for urgent measures to be taken for prevention of metal contamination in the river, through both, technology as well as implementation of regulations in order to sustain huge populations in megacities like Delhi. Waste water treatment from point sources needs tremendous improvement on the city. Treatment of the entire waste generated up to the tertiary level is required for minimizing dissolved solids, especially toxic metals, and rendering reuse in agriculture suitable. Treatment plants need proper operation, maintenance, uninterrupted power supply and regular monitoring. Various measure and programmes need to be undertaken to ensure safe reuse of wastewater.  相似文献   
39.
Abstract— Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post‐shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post‐shock heating raised the rock's temperature to about 1200 °C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene‐rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine‐grained, subophitic‐poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name “impact melt” has, in past studies, been applied only to rocks in which the melt fraction formed by shock‐induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name “impact melt” be restricted to rocks in which the bulk of the melt formed by shock‐induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号