首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65755篇
  免费   566篇
  国内免费   1252篇
测绘学   2244篇
大气科学   4569篇
地球物理   11810篇
地质学   28228篇
海洋学   4867篇
天文学   10968篇
综合类   2237篇
自然地理   2650篇
  2022年   303篇
  2021年   461篇
  2020年   513篇
  2019年   566篇
  2018年   7237篇
  2017年   6409篇
  2016年   4505篇
  2015年   817篇
  2014年   1139篇
  2013年   1719篇
  2012年   2695篇
  2011年   5523篇
  2010年   4703篇
  2009年   5218篇
  2008年   4295篇
  2007年   5223篇
  2006年   1402篇
  2005年   1332篇
  2004年   1358篇
  2003年   1363篇
  2002年   1116篇
  2001年   688篇
  2000年   649篇
  1999年   474篇
  1998年   501篇
  1997年   455篇
  1996年   394篇
  1995年   355篇
  1994年   381篇
  1993年   295篇
  1992年   300篇
  1991年   286篇
  1990年   323篇
  1989年   222篇
  1988年   225篇
  1987年   268篇
  1986年   210篇
  1985年   314篇
  1984年   276篇
  1983年   258篇
  1982年   275篇
  1981年   223篇
  1980年   268篇
  1979年   195篇
  1978年   211篇
  1977年   165篇
  1976年   169篇
  1975年   172篇
  1974年   167篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the precursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active-region’s magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca ii H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ≈ 8° toward the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ≈ 7°. This behavior of the field vector may provide a physical basis for future flare-forecasting efforts.  相似文献   
982.
In this paper we demonstrate that the wavelength dependence of polarization degree and position angle allows us to derive the distribution of magnetic field in accretion disc. The polarized radiation arises due to scattering of emission light by electrons in a magnetized optically thick accretion disc. Faraday rotation of polarization plane is taken into consideration. Through wavelength dependence of polarization it is possible to derive the value of the magnetic Prandtl number in the accretion disc plasma. The power law index of the polarization wavelength dependence is related with the radial distribution of magnetic field in an accretion disc. This allows us to test the various models of an accretion disc around the central black hole.  相似文献   
983.
The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et?al. (Solar Phys., 2010, doi: 10.1007/s11207-009-9485-8 ). In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.  相似文献   
984.
For the future development of Chinese Giant Solar Telescope (CGST) in Western China, a new sky brightness monitor (SBM) has been produced for the site survey for CGST. To critically examine the performance and sensitivity of SBM, we used it in the observation of the annular solar eclipse in Dali City, Yunnan, on 15 January 2010. The observation met good weather conditions with an almost clear sky during the eclipse. The SBM measurement translates into the solar illuminance changes at a level of 2.4×10?4 I?s?1 during the eclipse. The time of the minimal sky brightness in the field of view (FOV) is found consistent with the time of maximum eclipse. Two local sky regions in the FOV are chosen to make a time series of the calibrated skylight profiles. The evolution of the sky brightness thus calibrated also shows good consistency with the eclipse, particularly between the second and the third contacts. The minimal sky brightness in each local sky region took place within half a minute from the corresponding predicted contact time. Such small time delays were mainly caused by occasional cirri. The minimal sky brightness measured during the eclipse is a few millionths of I ?? with standard deviation of 0.11 millionths of I ??. The observation supports that the single-scattering process (optically thin conditions) is the main contributor to the atmospheric scattering. We have demonstrated that many important aerosol optical parameters can be deduced from our data. We conclude that the new SBM is a sensitive sky photometer that can be used for our CGST and coronagraph site surveys.  相似文献   
985.
The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1?AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (??) of these CMEs, which are measured out to ???0.7?AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and ??=2.5R+0.86 for the aspect ratio (W and R in units of?AU).  相似文献   
986.
Assuming that the relativistic universe is homogeneous and isotropic, we can unambiguously determine its model and physical properties, which correspond with the Einstein general theory of relativity (and with its two special partial solutions: Einstein special theory of relativity and Newton gravitation theory), quantum mechanics, and observations, too.  相似文献   
987.
Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.  相似文献   
988.
This is a crucial time in the history of astronomy with major all-sky surveying work being carried out in all spectral bands, as well as in astrometry. The results of this activity are advancing all fields of astrophysical research, from the investigation of exo-planetary systems to the study of the chemical evolution of the Universe. Full sky surveys are available from the radio domain to X-ray wavelengths but not in the ultraviolet range (UV). While large UV missions are currently under discussion within the astrophysical community and at the major Space Agencies, the efficient use of resources requires preparatory work that can fill the UV surveying gap. This article summarizes the research and on-going activities in this field.  相似文献   
989.
Studying relativistic compact objects is important in modern astrophysics to understand several astrophysical issues. It is therefore natural to ask for an internal structure and physical properties of specific classes of compact stars from astrophysical observations. We obtain a class of new relativistic solutions with anisotropic distribution of matter for compact stars. More specifically, stellar models, described by an anisotropic fluid, establishing a relation between metric potentials and generating a specific form of mass function, are explicitly constructed within the framework of General Relativity. New solutions can be used to model compact objects, which adequately describe compact strange star candidates like SMC X-1, Her X-1 and 4U 1538-52, with observational data taken from Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013). As a possible astrophysical application the obtained solutions could explain the physics of selfgravitating objects, and might be useful for strong-field regimes where data are currently inadequate.  相似文献   
990.
In this paper, we discuss an inflationary scenario via scalar field and fluid cosmology for an anisotropic homogeneous universe model in \(f(R)\) gravity. We consider an equation of state which corresponds to a quasi-de Sitter expansion and investigate the effect of the anisotropy parameter for different values of the deviation parameter. We evaluate potential models like linear, quadratic and quartic models which correspond to chaotic inflation. We construct the observational parameters for a power-law model of \(f(R)\) gravity and construct the graphical analysis of tensor–scalar ratio and spectral index which indicates the consistency of these parameters with Planck 2015 data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号