首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   36篇
  国内免费   9篇
测绘学   17篇
大气科学   51篇
地球物理   142篇
地质学   269篇
海洋学   71篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   41篇
  2012年   33篇
  2011年   43篇
  2010年   55篇
  2009年   52篇
  2008年   38篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有682条查询结果,搜索用时 281 毫秒
491.

Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from −20.6 ‰ in cold season to −23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from −23.9 to −22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.

  相似文献   
492.
493.
494.
Climate Dynamics - The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an...  相似文献   
495.
496.
497.
—The western Alpine regions have been instrumented since the beginning of the century, and the number of seismological stations largely increased since 1980. This dense network has allowed an important improvement in the hypocentral determination, even for low magnitude events. This condition was a good opportunity to perform a synthesis of 32 years of instrumental seismicity in the Western Alps and southeast of France (1962–1993) and to attempt an improvement of the older event location with the assistance of the more recent locations.¶The revised catalogue of seismicity is built using station corrections and regional crustal models. After the elimination of non-natural events, the catalogue is composed of 6697 events. Another improvement corresponds to the revision of magnitudes. We performed several tests to evaluate the reliability of our results location of quarry events and rock bursts, epicentral correlation with geological features, coherence in depth with interpreted seismic profile (ECORS line), Moho isobaths. A first use of this catalogue is presented for the Haute-Ubaye region in the southwestern Alps.  相似文献   
498.
Evaluating the feasibility of CO2 geologic sequestration requires the use of pressure-temperature-composition (P-T-X) data for mixtures of CO2 and H2O at moderate pressures and temperatures (typically below 500 bar and below 100°C). For this purpose, published experimental P-T-X data in this temperature and pressure range are reviewed. These data cover the two-phase region where a CO2-rich phase (generally gas) and an H2O-rich liquid coexist and are reported as the mutual solubilities of H2O and CO2 in the two coexisting phases. For the most part, mutual solubilities reported from various sources are in good agreement. In this paper, a noniterative procedure is presented to calculate the composition of the compressed CO2 and liquid H2O phases at equilibrium, based on equating chemical potentials and using the Redlich-Kwong equation of state to express departure from ideal behavior. The procedure is an extension of that used by King et al. (1992), covering a broader range of temperatures and experimental data than those authors, and is readily expandable to a nonideal liquid phase. The calculation method and formulation are kept as simple as possible to avoid degrading the performance of numerical models of water-CO2 flows for which they are intended. The method is implemented in a computer routine, and inverse modeling is used to determine, simultaneously, (1) new Redlich-Kwong parameters for the CO2-H2O mixture, and (2) aqueous solubility constants for gaseous and liquid CO2 as a function of temperature. In doing so, mutual solubilities of H2O from 15 to 100°C and CO2 from 12 to 110°C and up to 600 bar are generally reproduced within a few percent of experimental values. Fugacity coefficients of pure CO2 are reproduced mostly within one percent of published reference data.  相似文献   
499.
Grade estimates are often of weak precision in the case of heterogeneous media, due to their high variability, even at small scale. Qualitative information is then useful to improve the quality of the estimates, without prohibitive additional costs. How can we sample such variables, and detect the ones that are of interest for the estimation of grades? The general methodology is presented and then illustrated for the estimation of the benzo(a)pyren (a polycyclic aromatic hydrocarbon, PAH) concentration in soils, sampled on a former coking plant. To cite this article: N. Jeannée, C. de Fouquet, C. R. Geoscience 335 (2003).To cite this article: N. Jeannée, C. de Fouquet, C. R. Geoscience 335 (2003).  相似文献   
500.

Background

Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071–2100 is predicted to be 1–5.5 °C higher than that for 1971–2000. Climate change and elevated CO2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change.

Results

Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO2. The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C.

Conclusions

This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon balance. The simulated productivity increase in response to future global change enables an intensification of grassland management over Europe. However, the simulated increase in the interannual variability of grassland productivity over some regions may reduce the farmers’ ability to take advantage of the increased long-term mean productivity in the face of more frequent, and more severe drops of productivity in the future.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号