首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   36篇
  国内免费   9篇
测绘学   17篇
大气科学   51篇
地球物理   142篇
地质学   269篇
海洋学   71篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   41篇
  2012年   33篇
  2011年   43篇
  2010年   55篇
  2009年   52篇
  2008年   38篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有682条查询结果,搜索用时 46 毫秒
401.
We built a five-component (5C) land seismic sensor that measures both the three-component (3C) particle acceleration and two vertical gradients of the horizontal wavefield through a pair of 3C microelectromechanical accelerometers. The sensor is a small cylindrical device planted vertically just below the earth's surface. We show that seismic acquisition and processing 5C sensor data has the potential to replace conventional seismic acquisition with analogue geophone groups by single 5C sensors placed at the same station interval when combined with a suitable aliased ground roll attenuation algorithm. The 5C sensor, therefore, allows for sparser, more efficient, data acquisition. The accuracy of the 5C sensor wavefield gradients depends on the 3C accelerometers, their sensitivity, self-noise and their separation. These sensor component specifications are derived from various modelling studies. The design principles of the 5C sensor are validated using test data from purpose-built prototypes. The final prototype was constructed with a pair of 3C accelerometers separated by 20 cm and with a self-noise of 35 ng Hz−1/2. Results from a two-dimensional seismic line show that the seismic image of 5C sensor data with ground roll attenuated using 5C sensor gradient data was comparable to simulated analogue group data as is the standard in the industry. This field example shows that up to three times aliased ground roll was attenuated. The 5C sensor also allows for correcting vertical component accelerometer data for sensor tilt. It is shown that a vertical component sensor that is misaligned with the vertical direction by 10° introduces an error in the seismic data of around –20 dB with respect to the seismic signal, which can be fully corrected. Advances in sensor specifications and processing algorithms are expected to lead to even more effective ground roll attenuation, enabling a reduction in the receiver density resulting in a smaller number of sensors that must be deployed and, therefore, improving the operational efficiency while maintaining image quality.  相似文献   
402.
Source‐to‐sink studies and numerical modelling software are increasingly used to better understand sedimentary basins, and to predict sediment distributions. However, predictive modelling remains problematic in basins dominated by salt tectonics. The Lower Cretaceous delta system of the Scotian Basin is well suited for source‐to‐sink studies and provides an opportunity to apply this approach to a region experiencing active salt tectonism. This study uses forward stratigraphic modelling software and statistical analysis software to produce predictive stratigraphic models of the central Scotian Basin, test their sensitivity to different input parameters, assess proposed provenance pathways, and determine the distribution of sand and factors that control sedimentation in the basin. Models have been calibrated against reference wells and seismic surfaces, and implement a multidisciplinary approach to define simulation parameters. Simulation results show that previously proposed provenance pathways for the Early Cretaceous can be used to generate predictive stratigraphic models, which simulate the overall sediment distribution for the central Scotian Basin. Modelling confirms that the shaly nature of the Naskapi Member is the result of tectonic diversion of the Sable and Banquereau rivers and suggests additional episodic diversion during the deposition of the Cree Member. Sand is dominantly trapped on the shelf in all units, with transport into the basin along salt corridors and as a result of turbidity current flows occurring in the Upper Missisauga Formation and Cree Member. This led to sand accumulation in minibasins with a large deposit seawards of the Tantallon M‐41 well. Sand also appears to bypass the basin via salt corridors which lead to the down‐slope edge of the study area. Sensitivity analysis suggests that the grain size of source sediments to the system is the controlling factor of sand distribution. The methodology applied to this basin has applications to other regions complicated by salt tectonics, and where sediment distribution and transport from source‐to‐sink remain unclear.  相似文献   
403.
This study provides an analysis of vesicomyid bivalve–symbiont community distribution across cold seep and hydrothermal vent areas in the Guaymas Basin (Gulf of California, Mexico). Using a combination of morphological and molecular approaches including fluorescent in situ hybridization (FISH), and electronic microscopy observations, vesicomyid clam species and their associated symbionts were characterized and results were analyzed in light of geochemical conditions and other on‐site observations. A greater diversity of vesicomyids was found at cold seep areas, where three different species were present (Phreagena soyoae [syn. kilmeri], Archivesica gigas, and Calyptogena pacifica). In contrast, A. gigas was the only species sampled across the hydrothermal vent area. The same haplotype of A. gigas was found in both hydrothermal vent and cold seep areas, highlighting possible contemporary exchanges among neighboring vents and seeps. In either ecosystem, molecular characterization of the symbionts confirmed the specificity between symbionts and hosts and supported the hypothesis of a predominantly vertical transmission. In addition, patterns of clams could reflect potential niche preferences for each species. The occurrence of numerous traces of vesicomyid movements on sediments in the sites colonized by A. gigas seemed to indicate that this species might have a better ability to move. Furthermore, variation in gill sulfur content could reveal a higher plasticity and sulfur storage capacity in A. gigas. Thus, the distribution of vesicomyid species across the chemosynthetic areas of the Guaymas Basin could be explained by differences in biological traits of the vesicomyid species that would allow A. gigas to more easily exploit transient and punctual sources of available sulfide than P. soyoae.  相似文献   
404.
The Monteville spherule layer (MSL) was deposited in the Griqualand West Basin (GWB) on the Kaapvaal Craton approximately 2.63 Ga. The spherules were generated by a large impact and reworked by impact‐generated waves and/or currents. The MSL has been intersected in three previously undescribed cores. Two of the cores, GKF‐1 and GKP‐1, were drilled ~30 km west of the southernmost outcrop of the MSL. The third core, BH‐47, was drilled ~250 km south and east of the GWB. The MSL contains medium to coarse sand‐size spherules like those described previously in all three cores but each one was emplaced in a different way. In GKF‐1, the MSL is 90 cm thick and contains large rip‐up clasts of basinal carbonate and early diagenetic pyrite. In GKP‐1, the MSL is only 1.5 cm thick and consists largely of fine carbonate sand, yet it contains pyrite intraclasts up to ~1 cm long. In BH‐47, the MSL consists of a lower coarse sandy zone ~37 cm thick rich in spherules, carbonate peloids/ooids, pyrite intraclasts, and quartzose sand and an upper, finer sandy zone ~46 cm thick; neither zone contains any large intraclasts. The new occurrences triple the known extent of the MSL from ~15,000 to ~46,000 km2, support the oceanic impact model for the formation of the MSL, demonstrate that it is a persistent regional time‐stratigraphic marker, place new constraints on the Kaapvaal paleoshoreline at the time of impact, and support the existence of Vaalbara.  相似文献   
405.
Sangay (5230 m), the southernmost active volcano of the Andean Northern Volcanic Zone (NVZ), sits 130 km above a >32-Ma-old slab, close to a major tear that separates two distinct subducting oceanic crusts. Southwards, Quaternary volcanism is absent along a 1600-km-long segment of the Andes. Three successive edifices of decreasing volume have formed the Sangay volcanic complex during the last 500 ka. Two former cones (Sangay I and II) have been largely destroyed by sector collapses that resulted in large debris avalanches that flowed out upon the Amazon plain. Sangay III, being constructed within the last avalanche amphitheater, has been active at least since 14 ka BP. Only the largest eruptions with unusually high Plinian columns are likely to represent a major hazard for the inhabited areas located 30 to 100 km west of the volcano. However, given the volcano's relief and unbuttressed eastern side, a future collapse must be considered, that would seriously affect an area of present-day colonization in the Amazon plain, 30 km east of the summit. Andesites greatly predominate at Sangay, there being few dacites and basalts. In order to explain the unusual characteristics of the Sangay suite—highest content of incompatible elements (except Y and HREE) of any NVZ suite, low Y and HREE values in the andesites and dacites, and high Nb/La of the only basalt found—a preliminary five-step model is proposed: (1) an enriched mantle (in comparison with an MORB source), or maybe a variably enriched mantle, at the site of the Sangay, prior to Quaternary volcanism; (2) metasomatism of this mantle by important volumes of slab-derived fluids enriched in soluble incompatible elements, due to the subduction of major oceanic fracture zones; (3) partial melting of this metasomatized mantle and generation of primitive basaltic melts with Nb/La values typical of the NVZ, which are parental to the entire Sangay suite but apparently never reach the surface and subordinate production of high Nb/La basaltic melts, maybe by lower degrees of melting at the periphery of the main site of magma formation, that only infrequently reach the surface; (4) AFC processes at the base of a 50-km-thick crust, where parental melts pond and fractionate while assimilating remelts of similar basaltic material previously underplated, producing andesites with low Y and HREE contents, due to garnet stability at this depth; (5) low-pressure fractionation and mixing processes higher in the crust. Both an enriched mantle under Sangay prior to volcanism and an important slab-derived input of fluids enriched in soluble incompatible elements, two parameters certainly related to the unique setting of the volcano at the southern termination of the NVZ, apparently account for the exceptionally high contents of incompatible elements of the Sangay suite. In addition, the low Cr/Ni values of the entire suite—another unique characteristic of the NVZ—also requires unusual fractionation processes involving Cr-spinel and/or clinopyroxene, either in the upper mantle or at the base of the crust.  相似文献   
406.
The early Miocene Pedregoso Formation is one of the numerous formations rich in organic matter within the stratigraphic record of the Urumaco Trough, in the central area of the Falcón Basin. Due to its lithological characteristics and stratigraphic position, this formation is of great interest regarding the basin's petroliferous systems. The evaluation of various inorganic and organic geochemical parameters indicates that the organic matter is primarily of marine origin, deposited in a marine carbonate environment typical of reefal systems, under oxic-to-dysoxic conditions. The low variability in the TOC concentrations and in the distributions of the biomarkers extracted from the samples suggests that the paleoenvironmental conditions and the organic-matter supply remained approximately constant throughout the sedimentation of this unit. The Pedregoso type-II organic matter (marine origin) and initial organic richness value (∼1.8%) suggest that this unit has probably generated hydrocarbons within the Urumaco Trough. However, present-day thermal maturity parameters reveal that the Pedregoso organic matter is overmature (dry gas window), indicating that this unit is only capable to generate gas. In addition, the geothermal gradient, maturity parameters, and the maximum paleotemperature estimated in this study suggest that the Pedregoso Formation reached a maximum burial depth the ∼6.5 km, consistent with the value obtained from data of stratigraphic thickness in the Urumaco Trough. This implies that the thermal anomaly that affected the basin during the Late Eocene–Early Miocene did not reach the central part of the basin, and therefore, the organic matter maturation in this unit is due to the sedimentary burial.  相似文献   
407.
408.
To investigate the genesis of BIFs, we have determined the Fe and Si isotope composition of coexisting mineral phases in samples from the ∼2.5 billion year old Kuruman Iron Formation (Transvaal Supergroup, South Africa) and Dales Gorges Member of the Brockman Iron Formation (Hamersley Group, Australia) by UV femtosecond laser ablation coupled to a MC-ICP-MS. Chert yields a total range of δ30Si between −1.3‰ and −0.8‰, but the Si isotope compositions are uniform in each core section examined. This uniformity suggests that Si precipitated from well-mixed seawater far removed from its sources such as hydrothermal vents or continental drainage. The Fe isotope composition of Fe-bearing mineral phases is much more heterogeneous compared to Si with δ56Fe values of −2.2‰ to 0‰. This heterogeneity is likely due to variable degrees of partial Fe(II) oxidation in surface waters, precipitation of different mineral phases and post-depositional Fe redistribution. Magnetite exhibits negative δ56Fe values, which can be attributed to a variety of diagenetic pathways: the light Fe isotope composition was inherited from the Fe(III) precursor, heavy Fe(II) was lost by abiotic reduction of the Fe(III) precursor or light Fe(II) was gained from external fluids. Micrometer-scale heterogeneities of δ56Fe in Fe oxides are attributed to variable degrees of Fe(II) oxidation or to isotope exchange upon Fe(II) adsorption within the water column and to Fe redistribution during diagenesis. Diagenetic Fe(III) reduction caused by oxidation of organic matter and Fe redistribution is supported by the C isotope composition of a carbonate-rich sample containing primary siderite. These carbonates yield δ13C values of ∼−10‰, which hints at a mixed carbon source in the seawater of both organic and inorganic carbon. The ancient seawater composition is estimated to have a minimum range in δ56Fe of −0.8‰ to 0‰, assuming that hematite and siderite have preserved their primary Fe isotope signature. The long-term near-zero Fe isotope composition of the Hamersley and Transvaal BIFs is in balance with the assumed composition of the Fe sources. The negative Fe isotope composition of the investigated BIF samples, however, indicates either a perturbation of the steady state, or they have to be balanced spatially by deposition of isotopically heavy Fe. In the case of Si, the negative Si isotope signature of these BIFs stands in marked contrast to the assumed source composition. The deviation from potential source composition requires a complementary sink of isotopically heavy Si in order to maintain steady state in the basin. Perturbing the steady state by extraordinary hydrothermal activity or continental weathering in contrast would have led to precipitation of light Si isotopes from seawater. Combining an explanation for both elements, a likely scenario is a steady state ocean basin with two sinks. When all published Fe isotope records including BIFs, microbial carbonates, shales and sedimentary pyrites, are considered, a complementary sink for heavy Fe isotopes must have existed in Precambrian ocean basins. This Fe sink could have been pelagic sediments, which however are not preserved. For Si, such a complementary sink for heavy Si isotopes might have been provided by other chert deposits within the basin.  相似文献   
409.
The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.  相似文献   
410.
As the water concentration in magma decreases during magma ascent, olivine-hosted melt inclusions will reequilibrate with the host magma through hydrogen diffusion in olivine. Previous models showed that for a single spherical melt inclusion in the center of a spherical olivine, the rate of diffusive reequilibration depends on the partition coefficient and diffusivity of hydrogen in olivine, the radius of the melt inclusion, and the radius of the olivine. This process occurs within a few hours and must be considered when interpreting water concentration in olivine-hosted melt inclusions. A correlation is expected between water concentration and melt inclusion radius, because small melt inclusions are more rapidly reequilibrated than large ones when the other conditions are the same. This study investigates the effect of diffusive water loss in natural samples by exploring such a correlation between water concentration and melt inclusion radius, and shows that the correlation can be used to infer the initial water concentration and magma ascent rate. Raman and Fourier transform infrared spectroscopy measurements show that 31 melt inclusions (3.6–63.9 μm in radius) in six olivines from la Sommata, Vulcano Island, Aeolian Islands, have 0.93–5.28 wt% water, and the host glass has 0.17 wt% water. The water concentration in the melt inclusions shows larger variation than the data in previous studies (1.8–4.52 wt%). It correlates positively with the melt inclusion radius, but does not correlate with the major element concentrations in the melt inclusions, which is consistent with the hypothesis that the water concentration has been affected by diffusive water loss. In a simplified hypothetical scenario of magma ascent, the initial water concentration and magma ascent rate are inferred by numerical modeling of the diffusive water loss process. The melt inclusions in each olivine are assumed to have the same initial water concentration and magma ascent rate. The melt inclusions are assumed to be quenched after eruption (i.e., the diffusive water loss after eruption is not considered). The model results show that the melt inclusions initially had 3.9–5.9 wt% water and ascended at 0.002–0.021 MPa/s before eruption. The overall range of ascent rate is close to the lower limit of previous estimates on the ascent rate of basalts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号