首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   25篇
  国内免费   10篇
测绘学   17篇
大气科学   52篇
地球物理   147篇
地质学   271篇
海洋学   69篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   41篇
  2012年   33篇
  2011年   43篇
  2010年   55篇
  2009年   52篇
  2008年   38篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   25篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有688条查询结果,搜索用时 15 毫秒
101.
We question the correlation between vertical velocity (w) on the one hand and the occurrence of convective plumes in lidar reflectivity (i.e. range corrected backscatter signal Pz 2) and depolarization ratio (Δ) on the other hand in the convective boundary layer (CBL). Thermal vertical motion is directly investigated using vertical velocities measured by a ground-based Doppler lidar operating at 2 μm. This lidar provides also simultaneous measurements of lidar reflectivity. In addition, a second lidar 200 m away provides reflectivities at 0.53 and 1 μm and depolarization ratio at 0.53 μm. The time series from the two lidars are analyzed in terms of linear correlation coefficient (ρ). The main result is that the plume-like structures provided by lidar reflectivity within the CBL as well as the CBL height are not a clear signature of updrafts. It is shown that the lidar reflectivity within the CBL is frequently anti-correlated (ρ (w, Pz 2 )) with the vertical velocity. On the contrary, the correlation coefficient between the depolarization ratio and the vertical velocity ρ (w, Δ ) is always positive, showing that the depolarization ratio is a fair tracer of updrafts. The importance of relative humidity on the correlation coefficient is discussed. An erratum to this article can be found at  相似文献   
102.
A large spread exists in both Indian and Australian average monsoon rainfall and in their interannual variations diagnosed from various observational and reanalysis products. While the multi model mean monsoon rainfall from 59 models taking part in the Coupled Model Intercomparison Project (CMIP3 and CMIP5) fall within the observational uncertainty, considerable model spread exists. Rainfall seasonality is consistent across observations and reanalyses, but most CMIP models produce either a too peaked or a too flat seasonal cycle, with CMIP5 models generally performing better than CMIP3. Considering all North-Australia rainfall, most models reproduce the observed Australian monsoon-El Niño Southern Oscillation (ENSO) teleconnection, with the strength of the relationship dependent on the strength of the simulated ENSO. However, over the Maritime Continent, the simulated monsoon-ENSO connection is generally weaker than observed, depending on the ability of each model to realistically reproduce the ENSO signature in the Warm Pool region. A large part of this bias comes from the contribution of Papua, where moisture convergence seems to be particularly affected by this SST bias. The Indian summer monsoon-ENSO relationship is affected by overly persistent ENSO events in many CMIP models. Despite significant wind anomalies in the Indian Ocean related to Indian Ocean Dipole (IOD) events, the monsoon-IOD relationship remains relatively weak both in the observations and in the CMIP models. Based on model fidelity in reproducing realistic monsoon characteristics and ENSO teleconnections, we objectively select 12 “best” models to analyze projections in the rcp8.5 scenario. Eleven of these models are from the CMIP5 ensemble. In India and Australia, most of these models produce 5–20 % more monsoon rainfall over the second half of the twentieth century than during the late nineteenth century. By contrast, there is no clear model consensus over the Maritime Continent.  相似文献   
103.
Interannual variability of subtropical sea-surface-height (SSH) anomalies, estimated by satellite and tide-gauge data, is investigated in relation to wintertime daily North-Atlantic weather regimes. Sea-level anomalies can be viewed as proxies for the subtropical gyre intensity because of the intrinsic baroclinic structure of the circulation. Our results show that the strongest correlation between SSH and weather regimes is found with the so-called Atlantic-Ridge (AR) while no significant values are obtained for the other regimes, including those related to the North Atlantic Oscillation (NAO), known as the primary actor of the Atlantic dynamics. Wintertime AR events are characterized by anticyclonic wind anomalies off Europe leading to a northward shift of the climatological wind-stress curl. The latter affects subtropical SSH annual variability by altered Sverdrup balance and ocean Rossby wave dynamics propagating westward from the African coast towards the Caribbean. The use of a simple linear planetary geostrophic model allows to quantify those effects and confirms the primary importance of the winter season to explain the largest part of SSH interannual variability in the Atlantic subtropical gyre. Our results open new perspectives in the comprehension of North-Atlantic Ocean variability emphasizing the role of AR as a driver of interannual variability at least of comparable importance to NAO.  相似文献   
104.
105.
Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of ?0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.  相似文献   
106.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
107.
Abstract

Quality is key to ensuring that the potential offered by weather radar networks is realized. To achieve optimum quality, a comprehensive radar data quality management system, designed to monitor the end-to-end radar data processing chain and evaluate product quality, is being developed at the UK Met Office. Three contrasting elements of this system are described: monitoring of key radar hardware performance indicators; generation of long-term integrations of radar products; and monitoring of radar reflectivity factor using synthesized observations from numerical weather prediction model fields. Examples of each component are presented and ways in which the different types of monitoring information have been used to both identify issues with the radar product data quality and help formulate solutions are given.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Harrison, D., Georgiou, S., Gaussiat, N., and Curtis, A., 2013. Long-term diagnostics of precipitation estimates and the development of radar hardware monitoring within a radar product data quality management system. Hydrological Sciences Journal, 59 (7), 1327–1342. http://dx.doi.org/10.1080/02626667.2013.841316  相似文献   
108.
Eleven-year long time series of monthly beach profile surveys and hourly incident wave conditions are analyzed for a macrotidal Low Tide Terrace beach. The lower intertidal zone of the beach has a pluriannual cycle, whereas the upper beach profile has a predominantly seasonal cycle. An equilibrium model is applied to study the variation of the contour elevation positions in the intertidal zone as a function of the wave energy, wave power, and water level. When forcing the model with wave energy, the predictive ability of the equilibrium model is around 60% in the upper intertidal zone but decreases to 40% in the lower intertidal zone. Using wave power increases the predictive ability up to 70% in both the upper and lower intertidal zones. However, changes around the inflection point are not well predicted. The equilibrium model is then extended to take into account the effects of the tide level. The initial results do not show an increase in the predictive capacity of the model, but do allow the model free parameters to represent more accurately the values expected in a macrotidal environment. This allows comparing the empirical model calibration in different tidal environment. The interpretation of the model free parameter variation across the intertidal zone highlights the behavior of the different zones along the intertidal beach profile. This contributes to a global interpretation of the four model parameters for beaches with different tidal ranges, and therefore to a global model applicable at a wide variety sites.  相似文献   
109.
110.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号